Bjørn T Stokke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8613400/publications.pdf

Version: 2024-02-01

57631 74018 6,522 148 44 75 citations h-index g-index papers 148 148 148 6923 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Evidence for Egg-Box-Compatible Interactions in Calciumâ 'Alginate Gels from Fiber X-ray Diffraction. Biomacromolecules, 2007, 8, 2098-2103.	2.6	389
2	Improved chitosan-mediated gene delivery based on easily dissociated chitosan polyplexes of highly defined chitosan oligomers. Gene Therapy, 2004, 11, 1441-1452.	2.3	363
3	Small-Angle X-ray Scattering and Rheological Characterization of Alginate Gels. 1. Caâ^'Alginate Gels. Macromolecules, 2000, 33, 1853-1863.	2.2	308
4	The molecular basis of erythrocyte shape. Science, 1986, 234, 1217-1223.	6.0	297
5	Polyelectrolyte complex formation using alginate and chitosan. Carbohydrate Polymers, 2008, 74, 813-821.	5.1	290
6	The cytokine stimulating activity of $(1\hat{a}^{\dagger})^{-\hat{l}^2}$ -d-glucans is dependent on the triple helix conformation. Carbohydrate Research, 2000, 329, 587-596.	1.1	211
7	Higher order structure of (1,3)â€Î²â€< scp>Dâ€glucans and its influence on their biological activities and complexation abilities. Biopolymers, 2008, 89, 310-321.	1.2	156
8	Distribution of uronate residues in alginate chains in relation to alginate gelling properties. Macromolecules, 1991, 24, 4637-4645.	2.2	145
9	Nanoparticle-Hydrogel Composites: From Molecular Interactions to Macroscopic Behavior. Polymers, 2019, 11, 275.	2.0	142
10	Similarities and differences between alginic acid gels and ionically crosslinked alginate gels. Food Hydrocolloids, 2006, 20, 170-175.	5.6	130
11	Structural Analysis of Chitosan Mediated DNA Condensation by AFM:Â Influence of Chitosan Molecular Parameters. Biomacromolecules, 2004, 5, 928-936.	2.6	128
12	Determination of Glucose Levels Using a Functionalized Hydrogelâ-'Optical Fiber Biosensor: Toward Continuous Monitoring of Blood Glucose in Vivo. Analytical Chemistry, 2009, 81, 3630-3636.	3.2	116
13	Evidence for Age-Dependent <i>iin Vivo</i> Conformational Rearrangement within $A\hat{l}^2$ Amyloid Deposits. ACS Chemical Biology, 2013, 8, 1128-1133.	1.6	93
14	Effects of molecular weight and elastic segment flexibility on syneresis in Ca-alginate gels. Food Hydrocolloids, 2001, 15, 485-490.	5.6	91
15	Small-Angle X-ray Scattering and Rheological Characterization of Alginate Gels. 3. Alginic Acid Gels. Biomacromolecules, 2003, 4, 1661-1668.	2.6	88
16	Biochemical analysis of the processive mechanism for epimerization of alginate by mannuronan C-5 epimerase AlgE4. Biochemical Journal, 2004, 381, 155-164.	1.7	88
17	Glucose sensors based on a responsive gel incorporated as a Fabry-Perot cavity on a fiber-optic readout platform. Biosensors and Bioelectronics, 2009, 24, 2034-2039.	5.3	87
18	An antitumor, branched (1 \hat{a} †' 3)- \hat{l}^2 -d-glucan from a water extract of fruiting bodies of Cryptoporus volvatus. Carbohydrate Research, 1994, 263, 111-121.	1.1	84

#	Article	IF	CITATIONS
19	The Recombinant Azotobacter vinelandii Mannuronan C-5-Epimerase AlgE4 Epimerizes Alginate by a Nonrandom Attack Mechanism. Journal of Biological Chemistry, 1999, 274, 12316-12322.	1.6	79
20	The molecular size and shape of xanthan, xylinan, bronchial mucin, alginate, and amylose as revealed by electron microscopy. Carbohydrate Research, 1987, 160, 13-28.	1.1	75
21	Responsive Hydrogels for Label-Free Signal Transduction within Biosensors. Sensors, 2010, 10, 4381-4409.	2.1	74
22	The human erythrocyte membrane skeleton may be an ionic gel. European Biophysics Journal, 1986, 13, 203-218.	1.2	73
23	Glycosaminoglycan destabilization of DNA–chitosan polyplexes for gene delivery depends on chitosan chain length and GAG properties. Biochimica Et Biophysica Acta - General Subjects, 2005, 1721, 44-54.	1.1	73
24	Analysis of Compacted Semiflexible Polyanions Visualized by Atomic Force Microscopy: Influence of Chain Stiffness on the Morphologies of Polyelectrolyte Complexesâ€. Journal of Physical Chemistry B, 2003, 107, 8172-8180.	1.2	71
25	Influence of Oligoguluronates on Alginate Gelation, Kinetics, and Polymer Organization. Biomacromolecules, 2007, 8, 2388-2397.	2.6	71
26	Gelation of xanthan with trivalent metal ions. Carbohydrate Polymers, 1992, 18, 243-251.	5.1	67
27	Determination of Swelling of Responsive Gels with Nanometer Resolution. Fiber-Optic Based Platform for Hydrogels as Signal Transducers. Analytical Chemistry, 2008, 80, 5086-5093.	3.2	67
28	The relation of apple texture with cell wall nanostructure studied using an atomic force microscope. Carbohydrate Polymers, 2013, 92, 128-137.	5.1	66
29	Supercoiling in circular triple-helical polysaccharides. Macromolecules, 1991, 24, 6349-6351.	2.2	63
30	Versatile, cell and chip friendly method to gel alginate in microfluidic devices. Lab on A Chip, 2016, 16, 3718-3727.	3.1	63
31	Distribution of uronate residues in alginate chains in relation to alginate gelling properties $\hat{a} \in \mathbb{C}^2$ 2: Enrichment of \hat{l}^2 -d-mannuronic acid and depletion of \hat{l}^2 -l-guluronic acid in sol fraction. Carbohydrate Polymers, 1993, 21, 39-46.	5.1	62
32	DNA-polycation complexation and polyplex stability in the presence of competing polyanions. Biopolymers, 2005, 77, 86-97.	1.2	61
33	Depolymerization of double-stranded xanthan by acid hydrolysis: characterization of partially degraded double strands and single-stranded oligomers released from the ordered structures. Macromolecules, 1993, 26, 6111-6120.	2.2	60
34	Electron microscopic study of single-and double-stranded xanthan. International Journal of Biological Macromolecules, 1986, 8, 217-225.	3.6	58
35	Macrocyclization of polysaccharides visualized by electron microscopy. International Journal of Biological Macromolecules, 1993, 15, 63-68.	3.6	54
36	Conformation dependent depolymerisation kinetics of polysaccharides studied by viscosity measurements. Carbohydrate Polymers, 1994, 24, 265-275.	5.1	54

#	Article	IF	Citations
37	Mode of action of recombinantAzotobacter vinelandiimannuronan C-5 epimerases AlgE2 and AlgE4. Biopolymers, 2002, 63, 77-88.	1.2	54
38	Mode of action of chitin deacetylase from Mucor rouxii on partially N-acetylated chitosans. Carbohydrate Research, 1998, 311, 71-78.	1.1	53
39	Small-angle X-ray scattering and rheological characterization of alginate gels. 2. Time-resolved studies on ionotropic gels. Journal of Molecular Structure, 2000, 554, 21-34.	1.8	49
40	Metastable and stable states of xanthan polyelectrolyte complexes studied by atomic force microscopy. Biopolymers, 2004, 74, 199-213.	1.2	49
41	Characterisation of bacterial polysaccharides: steps towards single-molecular studies. Carbohydrate Research, 2003, 338, 2459-2475.	1.1	48
42	Polyelectrolyte and antipolyelectrolyte effects in swelling of polyampholyte and polyzwitterionic charge balanced and charge offset hydrogels. European Polymer Journal, 2014, 53, 65-74.	2.6	47
43	Acid Hydrolysis of Î ² - and Î ¹ -Carrageenan in the Disordered and Ordered Conformations: Characterization of Partially Hydrolyzed Samples and Single-Stranded Oligomers Released from the Ordered Structures. Macromolecules, 1998, 31, 1842-1851.	2.2	46
44	Crystal Structure of Cellulose Triacetate I. Macromolecules, 2004, 37, 4547-4553.	2.2	46
45	Single-molecular Pair Unbinding Studies of Mannuronan C-5 Epimerase AlgE4 and Its Polymer Substrate Biomacromolecules, 2004, 5, 1288-1295.	2.6	45
46	In vitro single-cell dissection revealing the interior structure of cable bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8517-8522.	3.3	45
47	Toehold of dsDNA exchange affects the hydrogel swelling kinetics of a polymer–dsDNA hybrid hydrogel. Soft Matter, 2011, 7, 1741-1746.	1.2	44
48	Development of an Oligonucleotide Functionalized Hydrogel Integrated on a High Resolution Interferometric Readout Platform as a Label-Free Macromolecule Sensing Device. Biomacromolecules, 2009, 10, 1619-1626.	2.6	43
49	The Influence of Charge Density of Chitosan in the Compaction of the Polyanions DNA and Xanthan. Biomacromolecules, 2007, 8, 1124-1130.	2.6	41
50	Spectrin, human erythrocyte shapes, and mechanochemical properties. Biophysical Journal, 1986, 49, 319-327.	0.2	40
51	Logic swelling response of DNA–polymer hybrid hydrogel. Soft Matter, 2011, 7, 4615.	1.2	38
52	Competitive ligand exchange of crosslinking ions for ionotropic hydrogel formation. Journal of Materials Chemistry B, 2016, 4, 6175-6182.	2.9	38
53	Rheology of xanthan and scleroglucan in synthetic seawater. Carbohydrate Polymers, 1992, 17, 209-220.	5.1	37
54	<scp>CD14</scp> , <scp>TLR4</scp> and <scp>TRAM</scp> Show Different Trafficking Dynamics During <scp>LPS</scp> Stimulation. Traffic, 2015, 16, 677-690.	1.3	35

#	Article	IF	CITATIONS
55	Sequence specificities for lysozyme depolymerization of partially N-acetylated chitosans. Canadian Journal of Chemistry, 1995, 73, 1972-1981.	0.6	33
56	Direct Determination of Chitosan–Mucin Interactions Using a Single-Molecule Strategy: Comparison to Alginate–Mucin Interactions. Polymers, 2015, 7, 161-185.	2.0	32
57	Probing macromolecular architectures of nanosized cyclic structures of $(1\hat{a}^{\dagger}, 3)^{-\hat{1}^2}$ -d-glucans by AFM and SEC-MALLS. Carbohydrate Research, 2005, 340, 971-979.	1.1	31
58	Polyelectrolyte layer interpenetration and swelling of alginate–chitosan multilayers studied by dual wavelength reflection interference contrast microscopy. Carbohydrate Polymers, 2008, 71, 672-681.	5.1	30
59	Comparison of scanning tunnelling microscopy and transmission electron microscopy image data of a microbial polysaccharide. Ultramicroscopy, 1993, 48, 197-201.	0.8	29
60	Development and application of a model for chitosan hydrolysis by a family 18 chitinase. Biopolymers, 2005, 77, 273-285.	1.2	29
61	Singleâ€molecule pair studies of the interactions of the αâ€GalNAc (Tnâ€antigen) form of porcine submaxillary mucin with soybean agglutinin. Biopolymers, 2009, 91, 719-728.	1.2	29
62	Self-Coacervation of a Silk-Like Protein and Its Use As an Adhesive for Cellulosic Materials. ACS Macro Letters, 2018, 7, 1120-1125.	2.3	29
63	Free-radical degradation of triple-stranded scleroglucan by hydrogen peroxide and ferrous ions. Carbohydrate Polymers, 1998, 37, 41-48.	5.1	28
64	Oligoguluronate induced competitive displacement of mucin–alginate interactions: relevance for mucolytic function. Soft Matter, 2012, 8, 8413.	1.2	28
65	Single molecule investigation of the onset and minimum size of the calcium-mediated junction zone in alginate. Carbohydrate Polymers, 2016, 148, 52-60.	5.1	28
66	Predicted influence of monomer sequence distribution and acetylation on the extension of naturally occurring alginates. Carbohydrate Polymers, 1993, 22, 57-66.	5.1	27
67	Gelation kinetics of scleraldehyde–chitosan co-gels. Polymer Gels and Networks, 1998, 6, 113-135.	0.6	26
68	Structural stability of (1â†'3)-β-d-glucan macrocycles. Carbohydrate Polymers, 2001, 44, 113-121.	5.1	26
69	PEGylated chitosan complexes DNA while improving polyplex colloidal stability and gene transfection efficiency. Carbohydrate Polymers, 2013, 94, 436-443.	5.1	25
70	Fabrication of monodisperse alginate microgel beads by microfluidic picoinjection: a chelate free approach. Lab on A Chip, 2021, 21, 2232-2243.	3.1	25
71	Thermal stability and chain conformational studies of xanthan at different ionic strengths. Carbohydrate Polymers, 1987, 7, 421-433.	5.1	24
72	Sclerox-chitosan co-gels: Effects of charge density on swelling of gels in ionic aqueous solution and in poor solvents, and on the rehydration of dried gels. Polymer Gels and Networks, 1998, 6, 471-492.	0.6	24

#	Article	IF	CITATIONS
73	Toroids of stiff polyelectrolytes. Current Opinion in Colloid and Interface Science, 2005, 10, 16-21.	3.4	24
74	Higher order structure of short immunostimulatory oligonucleotides studied by atomic force microscopy. Ultramicroscopy, 2010, 110, 689-693.	0.8	23
75	Controlled gelation of xanthan by trivalent chronic ions. Carbohydrate Polymers, 1988, 8, 245-256.	5.1	22
76	Potentiation of Histamine Release by Microfungal ($1\hat{a}$ †'3)- and ($1\hat{a}$ †'6)- \hat{l} ² -D-Glucans. Basic and Clinical Pharmacology and Toxicology, 2007, 101, 455-458.	1.2	22
77	Degradation of multistranded polymers: effects of interstrand stabilization in xanthan and scleroglucan studied by a Monte Carlo method. Macromolecules, 1992, 25, 2209-2214.	2.2	21
78	Release of disordered xanthan oligomers upon partial acid hydrolysis of double-stranded xanthan. Food Hydrocolloids, 1996, 10, 83-89.	5.6	21
79	Small-angle X-ray scattering and rheological characterization of alginate gels. Macromolecular Symposia, 1997, 120, 91-101.	0.4	21
80	Gelation of periodate oxidised scleroglucan (scleraldehyde). Carbohydrate Polymers, 2001, 46, 241-248.	5.1	21
81	Bioresponsive DNA-co-polymer hydrogels for fabrication of sensors. Current Opinion in Colloid and Interface Science, 2016, 26, 1-8.	3.4	21
82	Conformation of in aqueous solution. International Journal of Biological Macromolecules, 1994, 16, 313-317.	3.6	20
83	Carboxylation of scleroglucan for controlled crosslinking by heavy metal ions. Carbohydrate Polymers, 1995, 27, 5-11.	5.1	20
84	Colloidal gold and colloidal gold labelled wheat germ agglutinin as molecular probes for identification in mucin/chitosan complexes. Carbohydrate Polymers, 1997, 33, 91-99.	5.1	20
85	Determination of Molecular Parameters of Linear and Circular Scleroglucan Coexisting in Ternary Mixtures Using Light Scattering. Biomacromolecules, 2006, 7, 858-865.	2.6	20
86	Local structure of Ca 2+ induced hydrogels of alginate–oligoguluronate blends determined by small-angle-X-ray scattering. Carbohydrate Polymers, 2016, 152, 532-540.	5.1	20
87	The human erythrocyte membrane skeleton may be an ionic gel. III. Micropipette aspiration of unswollen erythrocytes. Journal of Theoretical Biology, 1986, 123, 205-211.	0.8	18
88	Enhanced Self-Association of Mucins Possessing the T and Tn Carbohydrate Cancer Antigens at the Single-Molecule Level. Biomacromolecules, 2012, 13, 1400-1409.	2.6	18
89	Scleroglucan Gelation byin SituNeutralization of the Alkaline Solution. Biomacromolecules, 2003, 4, 914-921.	2.6	17
90	Mapping enzymatic functionalities of mannuronan C-5 epimerases and their modular units by dynamic force spectroscopy. Carbohydrate Research, 2005, 340, 2782-2795.	1.1	16

#	Article	IF	Citations
91	Tn and STn are members of a family of carbohydrate tumor antigens that possess carbohydrate–carbohydrate interactions. Glycobiology, 2018, 28, 437-442.	1.3	16
92	Impact of Silanization Parameters and Antibody Immobilization Strategy on Binding Capacity of Photonic Ring Resonators. Sensors, 2020, 20, 3163.	2.1	16
93	Numerical model for alginate block specificity of mannuronate lyase from Haliotis. Carbohydrate Research, 1994, 260, 83-98.	1.1	14
94	Single Molecular Pair Interactions between Hydrophobically Modified Hydroxyethyl Cellulose and Amylose Determined by Dynamic Force Spectroscopy. Langmuir, 2009, 25, 10174-10182.	1.6	14
95	Higher order structures of a bioactive, water-soluble $(1\hat{a}\dagger'3)$ - \hat{l}^2 -d-glucan derived from Saccharomyces cerevisiae. Carbohydrate Polymers, 2013, 92, 1026-1032.	5.1	14
96	Quantitative analysis of atomic force microscopy topographs of biopolymer multilayers: Surface structure and polymer assembly modes. Thin Solid Films, 2008, 516, 7770-7776.	0.8	13
97	Structure and stability of polynucleotide- $(1,3)$ - \hat{l}^2 -D-glucan complexes. Carbohydrate Polymers, 2009, 76, 389-399.	5.1	12
98	Isothermal titration calorimetry study of the polyelectrolyte complexation of xanthan and chitosan samples of different degree of polymerization. Biopolymers, 2012, 97, 1-10.	1.2	12
99	Interactions between the breast cancer-associated MUC1 mucins and C-type lectin characterized by optical tweezers. PLoS ONE, 2017, 12, e0175323.	1.1	12
100	Pregel cluster formation in gelling polysaccharides visualized by electron microscopy. Polymer Gels and Networks, 1994, 2, 173-190.	0.6	11
101	Structure–Function Relationships in Glycopolymers: Effects of Residue Sequences, Duplex, and Triplex Organization. Biopolymers, 2013, 99, 757-771.	1.2	11
102	Novel imaging technologies for characterization of microbial extracellular polysaccharides. Frontiers in Microbiology, 2015, 06, 525.	1.5	11
103	Nanoindentation and finite element modelling of chitosan–alginate multilayer coated hydrogels. Soft Matter, 2016, 12, 7338-7349.	1.2	11
104	Donnan Contribution and Specific Ion Effects in Swelling of Cationic Hydrogels are Additive: Combined High-Resolution Experiments and Finite Element Modeling. Gels, 2020, 6, 31.	2.1	11
105	Long-term storage of xanthan in seawater at elevated temperature: physical dimensions and chemical composition of degradation products. International Journal of Biological Macromolecules, 1989, 11, 137-144.	3.6	10
106	Metastable, Partially Depolymerized Xanthans and Rearrangements toward Perfectly Matched Duplex Structures. Macromolecules, 1996, 29, 2939-2944.	2.2	10
107	Alginate Oligoguluronates as a Tool for Tailoring Properties of Caâ€Alginate Gels. Macromolecular Symposia, 2010, 291-292, 345-353.	0.4	10
108	Nanoscopic and Photonic Ultrastructural Characterization of Two Distinct Insulin Amyloid States. International Journal of Molecular Sciences, 2012, 13, 1461-1480.	1.8	10

#	Article	IF	Citations
109	Impregnation of weakly charged anionic microhydrogels with cationic polyelectrolytes and their swelling properties monitored by a high resolution interferometric technique. Transformation from a polyelectrolyte to polyampholyte hydrogel. European Polymer Journal, 2012, 48, 1949-1959.	2.6	10
110	Cyclodextrin triggered dimensional changes of polysaccharide nanogel integrated hydrogels at nanometer resolution. Soft Matter, 2013, 9, 5178.	1.2	10
111	Microarrays for the study of compartmentalized microorganisms in alginate microbeads and $(W/O/W)$ double emulsions. RSC Advances, 2016, 6, 114830-114842.	1.7	10
112	Effects of added oligoguluronate on mechanical properties of Ca – alginate – oligoguluronate hydrogels depend on chain length of the alginate. Carbohydrate Polymers, 2016, 147, 234-242.	5.1	10
113	Myeloma-derived extracellular vesicles mediate HGF/c-Met signaling in osteoblast-like cells. Experimental Cell Research, 2019, 383, 111490.	1.2	10
114	P265 the potential of chitosan as mucoadhesive drug carrier: Studies on its interaction with pig gastric mucin on a molecular level. European Journal of Pharmaceutical Sciences, 1994, 2, 185.	1.9	9
115	Electrostatically Self-Assembled Multilayers of Chitosan and Xanthan Studied by Atomic Force Microscopy and Micro-Interferometry. Macromolecular Symposia, 2005, 227, 161-172.	0.4	9
116	Interferometric characterization of swelling of covalently crosslinked alginate gel and changes associated with polymer impregnation. Carbohydrate Polymers, 2010, 80, 828-832.	5.1	9
117	Swelling of a hemi-ellipsoidal ionic hydrogel for determination of material properties of deposited thin polymer films: an inverse finite element approach. Soft Matter, 2013, 9, 5815.	1.2	9
118	Swelling Dynamics of a DNA-Polymer Hybrid Hydrogel Prepared Using Polyethylene Glycol as a Porogen. Gels, 2015, 1, 219-234.	2.1	9
119	Interactions of mucins with the Tn or Sialyl Tn cancer antigens including MUC1 are due to GalNAc–GalNAc interactions. Glycobiology, 2016, 26, 1338-1350.	1.3	8
120	The Characterisation and Quantification of Immobilised Concanavalin A on Quartz Surfaces Based on The Competitive Binding to Glucose and Fluorescent Labelled Dextran. Applied Sciences (Switzerland), 2019, 9, 318.	1.3	8
121	Scleroglucan gel volume changes in dimethylsulphoxide/water and alkaline solutions are partly caused by polymer chain conformational transitions. Carbohydrate Polymers, 1999, 39, 249-255.	5.1	7
122	Small angle x-ray scattering study of local structure and collapse transition of $(1,3)$ - $\hat{1}^2$ -D-glucan-chitosan gels. Journal of Chemical Physics, 2006, 125, 054908.	1.2	7
123	Potentials of bionanotechnology in the study and manufacturing of self-assembled biopolymer complexes and gels. Food Hydrocolloids, 2008, 22, 2-11.	5.6	7
124	Delaying cluster growth of ionotropic induced alginate gelation by oligoguluronate. Carbohydrate Polymers, 2015, 133, 126-134.	5.1	7
125	Single molecule study of heterotypic interactions between mucins possessing the Tn cancer antigen. Glycobiology, 2015, 25, 524-534.	1.3	7
126	Toehold Length of Target ssDNA Affects Its Reaction-Diffusion Behavior in DNA-Responsive DNA- <i>co</i> -Acrylamide Hydrogels. Biomacromolecules, 2020, 21, 1687-1699.	2.6	7

#	Article	IF	Citations
127	Energy Landscape of Alginate-Epimerase Interactions Assessed by Optical Tweezers and Atomic Force Microscopy. PLoS ONE, 2015, 10, e0141237.	1.1	7
128	The role of side-chains in the Cr3+-induced gelation of xanthan and xylinan (acetan) variants. Carbohydrate Polymers, 1994, 25, 25-29.	5.1	6
129	Influence of Aqueous Solvation on Side Chain-Backbone Interaction in Comblike Branched Bacterial Polysaccharides. Macromolecules, 1994, 27, 1124-1135.	2.2	6
130	Sliding Contact Dynamic Force Spectroscopy Method for Interrogating Slowly Forming Polymer Cross-Links. Langmuir, 2016, 32, 12814-12822.	1.6	6
131	On the Determination of Mechanical Properties of Aqueous Microgelsâ€"Towards High-Throughput Characterization. Gels, 2021, 7, 64.	2.1	6
132	A practical, high-resolution, microcomputer-based method for the analysis of relaxation data exhibiting multicomponent exponential decays. International Journal of Bio-medical Computing, 1985, 16, 35-57.	0.5	5
133	The fluid phase of morsellized bone: Characterization of viscosity and chemical composition. Journal of the Mechanical Behavior of Biomedical Materials, 2008, 1, 199-205.	1.5	5
134	Direct measurement of the interaction force between immunostimulatory CpG–DNA and TLR9 fusion protein. Journal of Molecular Recognition, 2012, 25, 74-81.	1.1	5
135	High resolution interferometry as a tool for characterization of swelling of weakly charged hydrogels subjected to amphiphile and cyclodextrin exposure. Journal of Colloid and Interface Science, 2013, 390, 282-290.	5.0	5
136	DNA Aptamer Functionalized Hydrogels for Interferometric Fiber-Optic Based Continuous Monitoring of Potassium Ions. Biosensors, 2021, 11, 266.	2.3	5
137	Recovering fluorophore concentration profiles from confocal images near lateral refractive index step changes. Journal of Biomedical Optics, 2016, 21, 126014.	1.4	4
138	Characterization of Mixing Performance Induced by Double Curved Passive Mixing Structures in Microfluidic Channels. Micromachines, 2021, 12, 556.	1.4	4
139	A Titratable Cell Lysis-on-Demand System for Droplet-Compartmentalized Ultrahigh-Throughput Screening in Functional Metagenomics and Directed Evolution. ACS Synthetic Biology, 2021, 10, 1882-1894.	1.9	4
140	A computerized low-shear pendulum viscoelastometer, stress-relaxation, shear creep, and dynamic elastic moduli measurements of soft biogels. International Journal of Bio-medical Computing, 1985, 17, 215-226.	0.5	3
141	Optical rotation of dilute aqueous xanthan solutions at elevated hydrostatic pressure. Journal of Applied Polymer Science, 1991, 42, 2063-2071.	1.3	3
142	Signal Amplification of a Gravimetric Glucose Biosensor Based on the Concanavalin A–Dextran Affinity Assay. IEEE Sensors Journal, 2021, 21, 4391-4404.	2.4	3
143	Interrelation between swelling, mechanical constraints and reaction–diffusion processes in molecular responsive hydrogels. Soft Matter, 2022, 18, 1510-1524.	1.2	3
144	An electrophoretic device concentrating charged macromolecules to a predetermined final solution volume. Analytical Biochemistry, 1985, 148, 527-532.	1.1	2

Bjørn T Stokke

#	Article	IF	CITATIONS
145	Transient electric birefringence study of rod-like triple-helical polysaccharide schizophyllan. Carbohydrate Polymers, 1996, 29, 277-283.	5.1	2
146	Swelling, mechanical properties and effect of annealing of scleroglucan gels. Carbohydrate Polymers, 2005, 60, 363-378.	5.1	2
147	Polymer sequencing by molecular machines: a framework for predicting the resolving power of a sliding contact force spectroscopy sequencing method. Nanoscale, 2017, 9, 15089-15097.	2.8	1
148	Morpholino Target Molecular Properties Affect the Swelling Process of Oligomorpholino-Functionalized Responsive Hydrogels. Polymers, 2020, 12, 268.	2.0	1