
Surajit Karmakar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/861307/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Coupled catalytic dephosphorylation and complex phosphate ion-exchange in networked hierarchical lanthanum carbonate grafted asymmetric bio-composite membrane. Journal of Colloid and Interface Science, 2022, 606, 2024-2037.	5.0	3
2	Colon targeted chitosan-melatonin nanotherapy for preclinical Inflammatory Bowel Disease. , 2022, 136, 212796.		9
3	Melatonin mediated inhibition of EZH2-NOS2 crosstalk attenuates inflammatory bowel disease in preclinical in vitro and in vivo models. Life Sciences, 2022, 302, 120655.	2.0	1
4	Nanoacetylated <i>N</i> -(4-Hydroxyphenyl) Retinamide Modulates Histone Acetylation–Methylation Epigenetic Disparity to Restrict Epithelial–Mesenchymal Transition in Neuroblastoma. ACS Medicinal Chemistry Letters, 2022, 13, 1109-1117.	1.3	6
5	Neuronal Bmi-1 is critical for melatonin induced ubiquitination and proteasomal degradation of α-synuclein in experimental Parkinson's disease models. Neuropharmacology, 2021, 194, 108372.	2.0	7
6	Genistein nanoformulation promotes selective apoptosis in oral squamous cell carcinoma through repression of 3PK-EZH2 signalling pathway. Phytomedicine, 2021, 80, 153386.	2.3	26
7	Chitosan nanocarrier for FTY720 enhanced delivery retards Parkinson's disease via PP2A-EzH2 signaling in vitro and ex vivo. Carbohydrate Polymers, 2021, 254, 117435.	5.1	15
8	Melatonin-loaded chitosan nanoparticles endows nitric oxide synthase 2 mediated anti-inflammatory activity in inflammatory bowel disease model. Materials Science and Engineering C, 2021, 124, 112038.	3.8	32
9	Pre-coating of protein modulate patterns of corona formation, physiological stability and cytotoxicity of silver nanoparticles. Science of the Total Environment, 2021, 772, 144797.	3.9	22
10	Alpha-ketoglutarate decorated iron oxide-gold core-shell nanoparticles for active mitochondrial targeting and radiosensitization enhancement in hepatocellular carcinoma. Materials Science and Engineering C, 2021, 129, 112394.	3.8	17
11	Hytrin loaded polydopamine-serotonin nanohybrid induces IDH2 mediated neuroprotective effect to alleviate Parkinson's disease. Materials Science and Engineering C, 2021, , 112602.	3.8	4
12	Recuperative effect of metformin loaded polydopamine nanoformulation promoting EZH2 mediated proteasomal degradation of phospho-α-synuclein in Parkinson's disease model. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 24, 102088.	1.7	29
13	Paclitaxel nanocrystalline assemblies as a potential transcatheter arterial chemoembolization (TACE) candidate for unresectable hepatocellular carcinoma. Materials Science and Engineering C, 2020, 107, 110315.	3.8	13
14	Nanoformulation of EPZ011989 Attenuates EZH2–c-Myb Epigenetic Interaction by Proteasomal Degradation in Acute Myeloid Leukemia. Molecular Pharmaceutics, 2020, 17, 604-621.	2.3	7
15	Melatonin/polydopamine nanostructures for collective neuroprotection-based Parkinson's disease therapy. Biomaterials Science, 2020, 8, 1345-1363.	2.6	30
16	PRT4165 nanocomposite promoting epigenetic retardation through proteasomal depletion of polycomb in acute myeloid leukemia. Applied Materials Today, 2020, 21, 100847.	2.3	1
17	A non-viral nano-delivery system targeting epigenetic methyltransferase EZH2 for precise acute myeloid leukemia therapy. Journal of Materials Chemistry B, 2020, 8, 8658-8670.	2.9	10
18	Near-Infrared Responsive Dopamine/Melatonin-Derived Nanocomposites Abrogating in Situ Amyloid β Nucleation, Propagation, and Ameliorate Neuronal Functions. ACS Applied Materials & Interfaces, 2020, 12, 5658-5670.	4.0	19

#	Article	IF	CITATIONS
19	Hypericin-Loaded Transferrin Nanoparticles Induce PP2A-Regulated BMI1 Degradation in Colorectal Cancer-Specific Chemo-Photodynamic Therapy. ACS Biomaterials Science and Engineering, 2020, 6, 3139-3153.	2.6	30
20	κ-carrageenan-C-phycocyanin based smart injectable hydrogels for accelerated wound recovery and real-time monitoring. Acta Biomaterialia, 2020, 109, 121-131.	4.1	59
21	Epigenetic Regulation of Bmi1 by Ubiquitination and Proteasomal Degradation Inhibit Bcl-2 in Acute Myeloid Leukemia. ACS Applied Materials & Interfaces, 2020, 12, 25633-25644.	4.0	8
22	Disulfide-Bridged Chitosan-Eudragit S-100 Nanoparticles for Colorectal Cancer. ACS Applied Nano Materials, 2019, 2, 6409-6417.	2.4	32
23	Nanostructure Endows Neurotherapeutic Potential in Optogenetics: Current Development and Future Prospects. ACS Chemical Neuroscience, 2019, 10, 3375-3385.	1.7	5
24	A NIR-responsive indocyanine green-genistein nanoformulation to control the polycomb epigenetic machinery for the efficient combinatorial photo/chemotherapy of glioblastoma. Nanoscale Advances, 2019, 1, 2188-2207.	2.2	13
25	Tailoring Biomolecular Interactions of Hybrid Nanostructures for their Diagnostic and Therapeutic Applications in Neurodegenerative Diseases. Biophysical Journal, 2019, 116, 315a.	0.2	0
26	New insight into curcumin tethered lanthanum carbonate nanospheres and protein corona conferring fluorescence enhancement based sensitive detection of Amyloid-l² aggregates. Sensors and Actuators B: Chemical, 2018, 262, 687-695.	4.0	8
27	Nanosensors and nanobiosensors in food and agriculture. Environmental Chemistry Letters, 2018, 16, 161-182.	8.3	195
28	1, 3β-Glucan anchored, paclitaxel loaded chitosan nanocarrier endows enhanced hemocompatibility with efficient anti-glioblastoma stem cells therapy. Carbohydrate Polymers, 2018, 180, 365-375.	5.1	44
29	Nanomaterial toxicity for plants. Environmental Chemistry Letters, 2018, 16, 85-100.	8.3	73
30	Superior Bactericidal Efficacy of Fucose-Functionalized Silver Nanoparticles against <i>Pseudomonas aeruginosa</i> PAO1 and Prevention of Its Colonization on Urinary Catheters. ACS Applied Materials & Interfaces, 2018, 10, 29325-29337.	4.0	35
31	Nanomelatonin triggers superior anticancer functionality in a human malignant glioblastoma cell line. Nanotechnology, 2017, 28, 365102.	1.3	20
32	Nanosensors for Food and Agriculture. Sustainable Agriculture Reviews, 2017, , 41-79.	0.6	4
33	Facile Synthesis of Largeâ€Pore Bicontinuous Cubic Mesoporous Silica Nanoparticles for Intracellular Gene Delivery. ChemNanoMat, 2016, 2, 220-225.	1.5	24
34	Shaping Nanoparticles with Hydrophilic Compositions and Hydrophobic Properties as Nanocarriers for Antibiotic Delivery. ACS Central Science, 2015, 1, 328-334.	5.3	65
35	Protein Therapy: Synthesis of Silica Vesicles with Controlled Entrance Size for High Loading, Sustained Release, and Cellular Delivery of Therapeutical Proteins (Small 24/2014). Small, 2014, 10, 4986-4986.	5.2	28
36	Modulating in vitro release and solubility of griseofulvin using functionalized mesoporous silica nanoparticles. Journal of Colloid and Interface Science, 2014, 434, 218-225.	5.0	62

SURAJIT KARMAKAR

#	Article	IF	CITATIONS
37	Synthesis of Silica Vesicles with Controlled Entrance Size for High Loading, Sustained Release, and Cellular Delivery of Therapeutical Proteins. Small, 2014, 10, 5068-5076.	5.2	45
38	Curcumin-cyclodextrin encapsulated chitosan nanoconjugates with enhanced solubility and cell cytotoxicity. Colloids and Surfaces B: Biointerfaces, 2014, 117, 520-527.	2.5	86
39	Mesoporous silica nanoparticles enhance the cytotoxicity of curcumin. RSC Advances, 2014, 4, 709-712.	1.7	90
40	Synthesis of SBA-15 rods with small sizes for enhanced cellular uptake. Journal of Materials Chemistry B, 2014, 2, 4929-4934.	2.9	23
41	Effect of Surface Functionality of Silica Nanoparticles on Cellular Uptake and Cytotoxicity. Molecular Pharmaceutics, 2014, 11, 3642-3655.	2.3	84
42	Rod-like mesoporous silica nanoparticles with rough surfaces for enhanced cellular delivery. Journal of Materials Chemistry B, 2014, 2, 253-256.	2.9	61
43	Synthesis of Silica Vesicles with Small Sizes and Reduced Aggregation for Photodynamic Therapy. Chemistry Letters, 2014, 43, 316-318.	0.7	2
44	Recent advances in the rational design of silica-based nanoparticles for gene therapy. Therapeutic Delivery, 2012, 3, 1217-37.	1.2	8
45	SU5416 and EGCG Work Synergistically and Inhibit Angiogenic and Survival Factors and Induce Cell Cycle Arrest to Promote Apoptosis in Human Malignant Neuroblastoma SH-SY5Y and SK-N-BE2 Cells. Neurochemical Research, 2011, 36, 1383-1396.	1.6	17
46	Valproic Acid Induced Differentiation and Potentiated Efficacy of Taxol and Nanotaxol for Controlling Growth of Human Glioblastoma LN18 and T98G Cells. Neurochemical Research, 2011, 36, 2292-2305.	1.6	17
47	Induction of Mitochondrial Pathways and Endoplasmic Reticulum Stress for Increasing Apoptosis in Ectopic and Orthotopic Neuroblastoma Xenografts. Journal of Cancer Therapy, 2011, 02, 77-90.	0.1	12
48	N-(4-Hydroxyphenyl) Retinamide Potentiated Anti-Tumor Efficacy of Genistein in Human Ewing's Sarcoma Xenografts. World Journal of Oncology, 2011, 2, 53-63.	0.6	1
49	Synergistic efficacy of sorafenib and genistein in growth inhibition by down regulating angiogenic and survival factors and increasing apoptosis through upregulation of p53 and p21 in malignant neuroblastoma cells having N-Myc amplification or non-amplification. Investigational New Drugs, 2010. 28. 812-824.	1.2	30
50	Activation of Multiple Molecular Mechanisms for Increasing Apoptosis in Human Glioblastoma T98G Xenograft. Journal of Cancer Science & Therapy, 2010, 02, 107-113.	1.7	12
51	Bcl-2 inhibitor HA14-1 and genistein together adeptly down regulated survival factors and activated cysteine proteases for apoptosis in human malignant neuroblastoma SK-N-BE2 and SH-SY5Y cells. Brain Research, 2009, 1283, 155-166.	1.1	13
52	Bcl-2 inhibitor and apigenin worked synergistically in human malignant neuroblastoma cell lines and increased apoptosis with activation of extrinsic and intrinsic pathways. Biochemical and Biophysical Research Communications, 2009, 388, 705-710.	1.0	30
53	5-Aminolevulinic acid-based photodynamic therapy suppressed survival factors and activated proteases for apoptosis in human glioblastoma U87MG cells. Neuroscience Letters, 2007, 415, 242-247.	1.0	61
54	Molecular Mechanism of Inositol Hexaphosphate-mediated Apoptosis in Human Malignant Glioblastoma T98G Cells. Neurochemical Research, 2007, 32, 2094-2102.	1.6	23

#	Article	IF	CITATIONS
55	Curcumin Suppressed Anti-apoptotic Signals and Activated Cysteine Proteases for Apoptosis in Human Malignant Glioblastoma U87MG Cells. Neurochemical Research, 2007, 32, 2103-2113.	1.6	86
56	Intracranial Stereotaxic Cannulation for Development of Orthotopic Glioblastoma Allograft in Sprague-Dawley Rats and Histoimmunopathological Characterization of the Brain Tumor. Neurochemical Research, 2007, 32, 2235-2242.	1.6	13
57	Garlic compounds induced calpain and intrinsic caspase cascade for apoptosis in human malignant neuroblastoma SH-SY5Y cells. Apoptosis: an International Journal on Programmed Cell Death, 2007, 12, 671-684.	2.2	94
58	Combination of all-trans retinoic acid and taxol regressed glioblastoma T98G xenografts in nude mice. Apoptosis: an International Journal on Programmed Cell Death, 2007, 12, 2077-2087.	2.2	40
59	Curcumin activated both receptor-mediated and mitochondria-mediated proteolytic pathways for apoptosis in human glioblastoma T98G cells. Neuroscience Letters, 2006, 407, 53-58.	1.0	117
60	4-Oxo-fenretinide-Loaded Human Serum Albumin Nanoparticles for the Inhibition of Epithelial–Mesenchymal Transition in Neuroblastoma Xenografts. ACS Applied Nano Materials, 0, , .	2.4	1