
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8613022/publications.pdf Version: 2024-02-01

Кони Мленол

#	Article	IF	CITATIONS
1	Evaluation of Active Control of Bubble Liposomes in a Bifurcated Flow under Various Ultrasound Conditions. Advanced Biomedical Engineering, 2014, 3, 21-28.	0.6	31
2	Effect of Existence of Red Blood Cells in Trapping Performance of Microbubbles by Acoustic Radiation Force. Japanese Journal of Applied Physics, 2011, 50, 07HF11.	1,5	29
3	Experimental Study of Active Path Block in a Multi-Bifurcated Flow by Microbubble Aggregation. Japanese Journal of Applied Physics, 2013, 52, 07HF15.	1.5	22
4	Preliminary study on forming microbubble-surrounded cells as carriers for cellular therapy and evaluation of ultrasound controllability by fluorescence imaging. Japanese Journal of Applied Physics, 2015, 54, 07HF19.	1.5	21
5	Experimental Study to Produce Multiple Focal Points of Acoustic Field for Active Path Selection of Microbubbles through Multi-bifurcation. Japanese Journal of Applied Physics, 2013, 52, 07HF13.	1.5	20
6	A Study of Scanning the Ultrasound Probe on Body Surface and Construction of Visual Servo System Based on Echogram. Journal of Robotics and Mechatronics, 2010, 22, 273-279.	1.0	18
7	Field Testing of a Remote Controlled Robotic Tele-echo System in an Ambulance Using Broadband Mobile Communication Technology. Journal of Medical Systems, 2008, 32, 235-242.	3.6	17
8	Development of support system to handle ultrasound probe by coordinated motion with medical robot. , 2011, 2011, 4519-22.		17
9	Auto-regulated osmotic pump for insulin therapy by sensing glucose concentration without energy supply. Sensors and Actuators B: Chemical, 1996, 34, 229-233.	7.8	15
10	Experimental study of active control of microbubbles in blood flow by forming their aggregations. , 2011, , .		14
11	Quantitative measurement of acoustic radiation force on a thin catheter for use in endovascular therapy. Japanese Journal of Applied Physics, 2014, 53, 07KC09.	1.5	14
12	Position Control of Ultrasound Transducer by Parallel Link Robot for Ultrasonic Therapy in Blood Vessel. Advanced Biomedical Engineering, 2013, 2, 117-123.	0.6	13
13	Ultrasound image-guided gene delivery using three-dimensional diagnostic ultrasound and lipid-based microbubbles. Journal of Drug Targeting, 2022, 30, 200-207.	4.4	11
14	Validation of tracking performance of cell–bubble aggregation versus variation of acoustic field. Japanese Journal of Applied Physics, 2017, 56, 07JF25.	1.5	11
15	Robotic ultrasound probe handling auxiliary by active compliance control. Advanced Robotics, 2013, 27, 503-512.	1.8	10
16	Acoustic field sweeping for active induction of bubble-surrounded T-cells. Japanese Journal of Applied Physics, 2018, 57, 07LF10.	1.5	10
17	3D Ultrasound Navigation System with Reconstruction of Blood Vessel Network for Microbubble Delivery Therapy. Advanced Biomedical Engineering, 2014, 3, 29-36.	0.6	9
18	Automatic Doppler Volume Fusion of 3D Ultrasound using Point-based Registration of Shared Bifurcation Points. Advanced Biomedical Engineering, 2015, 4, 27-34.	0.6	9

#	Article	IF	CITATIONS
19	Development of a Support System for Handling Ultrasound Probe to Alleviate Fatigue of Physician by Introducing a Coordinated Motion with Robot. Journal of the Robotics Society of Japan, 2011, 29, 634-642.	0.1	8
20	Effect of ultrasonic irradiation on bacterial biofilms. Journal of Medical Ultrasonics (2001), 2018, 45, 25-29.	1.3	8
21	Viability validation of therapeutic cells according to surrounded amount of microbubbles and ultrasound exposure condition. Japanese Journal of Applied Physics, 2019, 58, SGGE13.	1.5	8
22	Conductive and photovoltaic properties of multilayered ultrathin films designed by layer-by-layer assembly of titanium oxides. Thin Solid Films, 2011, 519, 2493-2498.	1.8	7
23	Robotic Ultrasound Guidance by B-scan Plane Positioning Control. Procedia CIRP, 2013, 5, 100-103.	1.9	7
24	Functional Analysis of Internal Moving Organs Using Super-Resolution Echography. Japanese Journal of Applied Physics, 1994, 33, 3134-3140.	1.5	6
25	Active control of cell with microbubbles for cellular immunotherapy by acoustic force. , 2015, , .		6
26	Bending of thin catheter by tempo-spatial division of ultrasound emission and evaluation of viscosity effect. Japanese Journal of Applied Physics, 2018, 57, 07LF21.	1.5	6
27	Navigation System with Augmented Reality for Ultrasonic Microbubble Delivery Therapy. Advanced Biomedical Engineering, 2012, 1, 16-22.	0.6	6
28	Robotic 3D position control of therapeutic ultrasonic field by ultrasound image information. , 2012, , .		5
29	Feasibility of thin catheter manipulation in the capillary blood vessel using acoustic radiation force. , 2013, , .		5
30	Validation of damage on vascular endothelial cells under ultrasound exposure according to adhered situation of bubbles. Japanese Journal of Applied Physics, 2022, 61, SG1066.	1.5	5
31	Quantitation of Fine Displacement in Echography. Japanese Journal of Applied Physics, 1993, 32, 2494-2499.	1.5	4
32	Development of a 3D reconstruction of blood vessel by positional calibration of ultrasound probe. , 2012, , .		4
33	Forming acoustic attraction force to concentrate microbubbles in flow using a matrix array transducer. , 2014, , .		4
34	Development of Support System to Acquire Echocardiogram by Extracting Contour of Left Ventricular Wall. IEEJ Transactions on Electronics, Information and Systems, 2009, 129, 2180-2188.	0.2	4
35	Development of Probe Scan Mechanism for Echography using Pneumatic Actuators and Its Estimation Control in Contact Force on Body Surface. Journal of the Robotics Society of Japan, 2010, 28, 792-801.	0.1	3
36	Development of a Drug Delivery System Using Microcapsules with Ultrasound. Biocybernetics and Biomedical Engineering, 2011, 31, 23-32.	5.9	3

#	Article	IF	CITATIONS
37	Observation of flow variation in capillaries of artificial blood vessel by producing microbubble aggregations. , 2012, 2012, 2064-7.		3
38	Three-dimensional design of acoustic field to trap higher amount of microbubbles in flow using a matrix array transducer. , 2013, , .		3
39	Active induction of microbubbles in flow at T-form bifurcation through acoustic focal points with phase variation. , 2014, , .		3
40	Reconstruction of three-dimensional blood vessel network using multiple ultrasound volumes constructed by weighted fusion between B-mode and Doppler-mode. , 2017, , .		3
41	Experimental Study for Active Control of Bubble-Surrounded Cells by Acoustic Radiation Force with Considering Optimal Production and Cell Viability. , 2018, , .		3
42	Evaluation of damage on vascular endothelial cells under exposure of burst wave with presence of lipid bubbles. , 2020, , .		3
43	Experimental study of ultrasound retention of bubble-surrounded cells under various conditions of acoustic field and flow velocity. Japanese Journal of Applied Physics, 2022, 61, SG1071.	1.5	3
44	TéIé-Échographie Robotisée: des concepts à la validation clinique. Annales Des Telecommunications/Annals of Telecommunications, 2003, 58, 687-697.	2.5	2
45	Active control of microcapsules in artificial blood vessel by producing local acoustic radiation force. , 2009, 2009, 295-8.		2
46	Development of automatic recognition software of left ventricle by time series processing echocardiograms and application to disease heart. , 2012, , .		2
47	Patient-mounted Robot for 2D Ultrasound Probe Scanning using McKibben Artificial Muscles. Advanced Biomedical Engineering, 2014, 3, 130-138.	0.6	2
48	New discovery of thin catheter movement under acoustical field of focused transducer. , 2015, , .		2
49	Detachment of Submicron Particles from Substrates Using the Suspension-Assisted Ultrasonic Method. Journal of Chemical Engineering of Japan, 2021, 54, 135-143.	0.6	2
50	Development of Tele-echography Interface Considering Contact Force of Ultrasound Probe to Body Surface. Transactions of the Society of Instrument and Control Engineers, 2008, 44, 878-885.	0.2	2
51	Study to prevent the density of microcapsules from diffusing in blood vessel by local acoustic radiation force. , 2010, 2010, 402-5.		1
52	Development of cooperate system with medical robot to alleviate fatigue in echography. , 2012, , .		1
53	Reconstruction and error detection of blood vessel network from ultrasound volume data. , 2013, , .		1
54	Robotic control of therapeutic device on body surface considering contact force and moment. , 2015, , .		1

#	Article	IF	CITATIONS
55	Active induction of bubble liposome at the bifurcation of in vivo blood vessel with optical measurement and robotic positioning. , 2016, , .		1
56	Reconstruction of three-dimensional blood vessel network using multiple ultrasound volumes constructed by weighted fusion between B-mode and Doppler-mode. , 2017, , .		1
57	Solution-Processed Multilayered Polymer Solar Cells Designed by Layer-by-Layer Assembly of Poly(<i>p</i> -phenylenevinylene)s with Dimethylsulfoxide. Transactions of the Materials Research Society of Japan, 2010, 35, 31-34.	0.2	1
58	Detaching thin catheter from adhesion on blood vessel wall using acoustic radiation force with solid vibration. Japanese Journal of Applied Physics, 2020, 59, SKKE22.	1.5	1
59	Development of Simulation CAD for Biochemical IC (2nd report). Journal of Computer Aided Chemistry, 2001, 2, 62-69.	0.3	1
60	Development of Simulation CAD for Biochemical IC (1st report). Journal of Computer Aided Chemistry, 2001, 2, 52-61.	0.3	1
61	Probe Scanning Support System by a Parallel Mechanism for Robotic Echography. IEEJ Transactions on Electronics, Information and Systems, 2010, 130, 433-441.	0.2	1
62	Elucidation of Intersection Distribution in Motion Vectors from Successive Echocardiograms and its Application for Heart Diseases. IEEJ Transactions on Electronics, Information and Systems, 2011, 131, 167-174.	0.2	1
63	Development of recognition software of heart to find the standard cross section on echocardiography. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 2007, 351-4.	0.5	0
64	Production and active control of microbubbles aggregations in artificial capillary with multiple sound sources. , 2012, , .		0
65	Development of Augmented Reality Body-Mark system to support echography. , 2012, , .		Ο
66	Active control of bubble liposome through artificial capillary by using matrix array transducer. , 2013, , .		0
67	Features of acoustic radiation function on thin catheter as a tube. , 2015, , .		0
68	Active control of nanobubble-surrounded cells propelled by acoustic radiation force with verification of frequency dependence. , 2016, , .		0
69	Possibility of active induction of bubble-surrounded cells in flow under ultrasound exposure. , 2016, ,		Ο
70	Development of robotic system with optical position sensing for ultrasound theranostics. , 2016, , .		0
71	Thin catheter bending in arbitrary direction using tempo-spatial variation of acoustic distribution. , 2017, , .		0
72	Three-dimensional measurement of tip position of catheter in ultrasound volume through time-series analysis of microbubble dispersion. , 2019, , .		0

#	Article	IF	CITATIONS
73	Development of support software for ultrasound therapy to control micro objects through blood vessel by acoustic radiation force. Journal of Japan Society of Computer Aided Surgery, 2021, 23, 15-22.	0.0	0
74	A106 Development of virtual echography with force sensation by combining parallel wire drive system and link mechanism. The Proceedings of the JSME Conference on Frontiers in Bioengineering, 2006, 2006.17, 13-14.	0.0	0
75	A108 Three-dimensional contact force control of ultrasound probe on human body by parallel link robot. The Proceedings of the JSME Conference on Frontiers in Bioengineering, 2006, 2006.17, 17-18.	0.0	0
76	A107 Virtual restitution force production for safety remote control by using parallel wire drive system. The Proceedings of the JSME Conference on Frontiers in Bioengineering, 2006, 2006.17, 15-16.	0.0	0
77	2A1-H08 Development of a controller with variable pivot point for fine adjustment by wire drive mechanism and parallel link. The Proceedings of JSME Annual Conference on Robotics and Mechatronics (Robomec), 2008, 2008, _2A1-H08_12A1-H08_4.	0.0	0
78	2P1-C09 Construction of Diagnosis and Treatment Support System for Robotic Echography Based on Hybrid Pneumatic and Electric Drive(Medical Robotics and Mechatronics). The Proceedings of JSME Annual Conference on Robotics and Mechatronics (Robomec), 2011, 2011, _2P1-C09_12P1-C09_4.	0.0	0
79	2A1-R09 Robotic 3D position control of therapeutic ultrasonic field by ultrasound image information(Medical Robotics and Mechatronics(2)). The Proceedings of JSME Annual Conference on Robotics and Mechatronics (Robomec), 2012, 2012, _2A1-R09_12A1-R09_4.	0.0	0
80	Validation of controllability of bubble liposome induction in blood flow under ultrasound field. Choonpa Igaku, 2016, 43, 639-648.	0.0	0
81	Part 11. How to investigate acoustic radiation force with micro object. Choonpa Igaku, 2018, 45, 187-190.	0.0	0
82	Freehand 3D Ultrasound Technique for Ultrasound Navigation. Journal of Japan Society of Computer Aided Surgery, 2019, 21, 75-80.	0.0	0