Jason Jonkman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8612888/publications.pdf

Version: 2024-02-01

840776 839539 1,000 51 11 18 citations h-index g-index papers 68 68 68 604 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Influence of Control on the Pitch Damping of a Floating Wind Turbine. , 2008, , .		104
2	The Effect of Second-order Hydrodynamics on Floating Offshore Wind Turbines. Energy Procedia, 2013, 35, 253-264.	1.8	89
3	The New Modularization Framework for the FAST Wind Turbine CAE Tool. , 2013, , .		80
4	Development of Fully Coupled Aeroelastic and Hydrodynamic Models for Offshore Wind Turbines. , 2006, , .		64
5	Offshore Code Comparison Collaboration Continuation Within IEA Wind Task 30: Phase II Results Regarding a Floating Semisubmersible Wind System. , 2014, , .		58
6	Modeling and Control to Mitigate Resonant Load in Variable-Speed Wind Turbine Drivetrain. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2013, 1, 277-286.	5. 4	53
7	The creation of a comprehensive metocean data set for offshore wind turbine simulations. Wind Energy, 2016, 19, 1151-1159.	4.2	48
8	Multimodel validation of single wakes in neutral and stratified atmospheric conditions. Wind Energy, 2020, 23, 2027-2055.	4.2	46
9	Development and Verification of a Fully Coupled Simulator for Offshore Wind Turbines. , 2007, , .		42
10	State-Space Control of Tower Motion for Deepwater Floating Offshore Wind Turbines. , 2008, , .		30
11	Development of performance specifications for hybrid modeling of floating wind turbines in wave basin tests. Journal of Ocean Engineering and Marine Energy, 2018, 4, 1-23.	1.7	26
12	OC6 phase I: Improvements to the OpenFAST predictions of nonlinear, low-frequency responses of a floating offshore wind turbine platform. Renewable Energy, 2022, 187, 282-301.	8.9	21
13	OC6 Phase Ib: Validation of the CFD predictions of difference-frequency wave excitation on a FOWT semisubmersible. Ocean Engineering, 2021, 241, 110026.	4.3	20
14	New Developments for the NWTC's FAST Aeroelastic HAWT Simulator., 2004,,.		18
15	Modal Dynamics of Large Wind Turbines With Different Support Structures. , 2008, , .		15
16	Uncertainty Assessment of CFD Investigation of the Nonlinear Difference-Frequency Wave Loads on a Semisubmersible FOWT Platform. Sustainability, 2021, 13, 64.	3.2	15
17	Comparison of Hydrodynamic Load Predictions Between Reduced Order Engineering Models and Computational Fluid Dynamics for the OC4-DeepCwind Semi-Submersible. , 2014, , .		14
18	Comparison of Second-Order Loads on a Semisubmersible Floating Wind Turbine. , 2014, , .		13

#	Article	IF	Citations
19	Extending the Capabilities of the Mooring Analysis Program: A Survey of Dynamic Mooring Line Theories for Integration Into FAST. , 2014 , , .		13
20	Validation of Hydrodynamic Load Models Using CFD for the OC4-DeepCwind Semisubmersible. , 2015, , .		13
21	FAST.Farm development and validation of structural load prediction against large eddy simulations. Wind Energy, 2021, 24, 428-449.	4.2	13
22	FAST.Farm load validation for single wake situations at alpha ventus. Wind Energy Science, 2021, 6, 1247-1262.	3.3	13
23	OC6 Phase Ia: CFD Simulations of the Free-Decay Motion of the DeepCwind Semisubmersible. Energies, 2022, 15, 389.	3.1	13
24	Numerical Stability and Accuracy of Temporally Coupled Multi-Physics Modules in Wind Turbine CAE Tools., 2013,,.		12
25	Designing and Integrating Wind Power Laboratory Experiments in Power and Energy Systems Courses. IEEE Transactions on Power Systems, 2014, 29, 1944-1951.	6.5	12
26	Modeling the TetraSpar Floating Offshore Wind Turbine Foundation as a Flexible Structure in OrcaFlex and OpenFAST. Energies, 2021, 14, 7866.	3.1	11
27	Verification of a Numerical Model of the Offshore Wind Turbine From the Alpha Ventus Wind Farm Within OC5 Phase III. , 2018 , , .		10
28	Numerical investigation of wind turbine wakes under high thrust coefficient. Wind Energy, 2022, 25, 605-617.	4.2	9
29	Development and Validation of an Aeroelastic Model of a Small Furling Wind Turbine. , 2005, , .		8
30	Computation of Nonlinear Hydrodynamic Loads on Floating Wind Turbines Using Fluid-Impulse Theory. , 2015, , .		8
31	Validation of Numerical Models of the Offshore Wind Turbine From the Alpha Ventus Wind Farm Against Full-Scale Measurements Within OC5 Phase III. Journal of Offshore Mechanics and Arctic Engineering, 2021, 143, .	1.2	8
32	A multipurpose lifting-line flow solver for arbitrary wind energy concepts. Wind Energy Science, 2022, 7, 455-467.	3.3	8
33	Wind turbine response in waked inflow: A modelling benchmark against full-scale measurements. Renewable Energy, 2022, 191, 868-887.	8.9	7
34	Numerical Prediction of Experimentally Observed Behavior of a Scale-Model of an Offshore Wind Turbine Supported by a Tension-Leg Platform. , 2013, , .		6
35	Computation of Wave Loads Under Multidirectional Sea States for Floating Offshore Wind Turbines. , 2014, , .		6
36	Assessment of Experimental Uncertainty for a Floating Wind Semisubmersible Under Hydrodynamic Loading. , 2018, , .		6

#	Article	IF	Citations
37	Functional Requirements for the WEIS Toolset to Enable Controls Co-Design of Floating Offshore Wind Turbines. , 2021, , .		5
38	Influence of wind turbine design parameters on linearized physics-based models in OpenFAST. Wind Energy Science, 2022, 7, 559-571.	3.3	5
39	Incorporation of Multi-Member Substructure Capabilities in FAST for Analysis of Offshore Wind Turbines. , 2012, , .		4
40	Impacts of providing inertial response on dynamic loads of wind turbine drivetrains. , 2014, , .		4
41	Bichromatic Wave Selection for Validation of the Difference-Frequency Transfer Function for the OC6 Validation Campaign. , 2019, , .		4
42	Validation of Numerical Models of the Offshore Wind Turbine From the Alpha Ventus Wind Farm Against Full-Scale Measurements Within OC5 Phase III., 2019, , .		4
43	Investigation of the IEC Safety Standard for Small Wind Turbine Design Through Modeling and Testing. , 2003, , 340.		3
44	Offshore Code Comparison Collaboration: Phase III Results Regarding Tripod Support Structure Modeling., 2009,,.		3
45	Investigation of Nonlinear Difference-Frequency Wave Excitation on a Semisubmersible Offshore-Wind Platform With Bichromatic-Wave CFD Simulations. , 2021, , .		3
46	Effect of Second-Order and Fully Nonlinear Wave Kinematics on a Tension-Leg-Platform Wind Turbine in Extreme Wave Conditions. , 2017, , .		3
47	Building and calibration of a fast model of the SWAY prototype floating wind turbine. , 2013, , .		2
48	Hydrodynamic Analysis of a Suspended Cylinder Under Regular Wave Loading Based on Computational Fluid Dynamics. , $2019, , .$		1
49	Investigation of the IEC Safety Standard for Small Wind Turbine Design Through Modeling and Testing. , 2003, , .		0
50	Simulation tool to assess mechanical and electrical stresses on wind turbine generators., 2013,,.		0
51	OC6 Phase II: Integration and verification of a new soil–structure interaction model for offshore wind design. Wind Energy, 2022, 25, 793-810.	4.2	0