José Eduardo Castanheiro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8612839/publications.pdf

Version: 2024-02-01

40 papers 1,669 citations

304743 22 h-index 345221 36 g-index

41 all docs

41 docs citations

41 times ranked

1564 citing authors

#	Article	IF	Citations
1	Acetylation of glycerol over heteropolyacids supported on activated carbon. Catalysis Communications, 2011, 12, 573-576.	3.3	157
2	Valorisation of glycerol by condensation with acetone over silica-included heteropolyacids. Applied Catalysis B: Environmental, 2010, 98, 94-99.	20.2	152
3	Esterification of glycerol with acetic acid over dodecamolybdophosphoric acid encaged in USY zeolite. Catalysis Communications, 2009, 10, 481-484.	3.3	127
4	Esterification of free fatty acids with methanol using heteropolyacids immobilized on silica. Catalysis Communications, 2008, 9, 1996-1999.	3.3	110
5	Valorization of glycerol into fuel additives over zeolites as catalysts. Chemical Engineering Journal, 2011, 178, 291-296.	12.7	99
6	Transesterification of soybean oil over sulfonic acid functionalised polymeric membranes. Catalysis Today, 2006, 118, 166-171.	4.4	89
7	Glycerol acetylation over dodecatungstophosphoric acid immobilized into a silica matrix as catalyst. Applied Catalysis B: Environmental, 2009, 91, 416-422.	20.2	84
8	Esterification of fatty acids to biodiesel over polymers with sulfonic acid groups. Applied Catalysis A: General, 2009, 359, 41-46.	4.3	82
9	Esterification of free fatty acids to biodiesel over heteropolyacids immobilized on mesoporous silica. Applied Catalysis A: General, 2010, 390, 183-189.	4.3	81
10	Esterification of acetic acid by isoamylic alcohol over catalytic membranes of poly(vinyl alcohol) containing sulfonic acid groups. Applied Catalysis A: General, 2006, 311, 17-23.	4.3	70
11	Esterification of free fatty acids over chitosan with sulfonic acid groups. Chemical Engineering Journal, 2013, 230, 567-572.	12.7	56
12	The acid-catalysed reaction of \hat{l}_{\pm} -pinene over molybdophosphoric acid immobilised in dense polymeric membranes. Catalysis Today, 2003, 82, 187-193.	4.4	54
13	Hydration of \hat{l} ±-pinene over zeolites and activated carbons dispersed in polymeric membranes. Catalysis Today, 2000, 56, 167-172.	4.4	53
14	Hydration of α-pinene over molybdophosphoric acid immobilized in hydrophobically modified PVA membranes. Catalysis Today, 2005, 104, 296-304.	4.4	46
15	The effect of α-terpineol on the hydration of α-pinene over zeolites dispersed in polymeric membranes. Catalysis Today, 2001, 67, 217-223.	4.4	43
16	Pharmaceuticals sorption behaviour in granulated cork for the selection of a support matrix for a constructed wetlands system. International Journal of Environmental Analytical Chemistry, 2011, 91, 615-631.	3.3	40
17	Mesoporous zirconia-based mixed oxides as versatile acid catalysts for producing bio-additives from furfuryl alcohol and glycerol. Applied Catalysis A: General, 2014, 487, 148-157.	4.3	31
18	Tungstophosphoric acid immobilised in SBA-15 as an efficient heterogeneous acid catalyst for the conversion of terpenes and free fatty acids. Microporous and Mesoporous Materials, 2017, 249, 16-24.	4.4	31

#	Article	IF	Citations
19	Mesoporous carbon as an efficient catalyst for alcoholysis and aminolysis of epoxides. Applied Catalysis A: General, 2012, 439-440, 24-30.	4.3	28
20	Methoxylation of \hat{l}_{\pm} -pinene over heteropolyacids immobilized in silica. Applied Catalysis A: General, 2010, 373, 140-146.	4.3	24
21	Hydrolysis of sucrose using sulfonated poly(vinyl alcohol) as catalyst. Bioresource Technology, 2009, 100, 4546-4550.	9.6	23
22	Alkoxylation of camphene over silica-occluded tungstophosphoric acid. Applied Catalysis A: General, 2013, 451, 36-42.	4.3	22
23	Methoxylation of \hat{l}_{\pm} -pinene over mesoporous carbons and microporous carbons: A comparative study. Microporous and Mesoporous Materials, 2014, 199, 66-73.	4.4	21
24	Methoxylation of \hat{l}_{\pm} -pinene over poly(vinyl alcohol) containing sulfonic acid groups. Chemical Engineering Journal, 2009, 147, 302-306.	12.7	18
25	SBA-15 with sulfonic acid groups as a Green Catalyst for the acetoxylation of \hat{l}_{\pm} -pinene. Microporous and Mesoporous Materials, 2012, 163, 237-242.	4.4	17
26	Glycerol conversion into biofuel additives by acetalization with pentanal over heteropolyacids immobilized on zeolites. Catalysis Today, 2020, 346, 76-80.	4.4	14
27	Mesoporous silica containing sulfonic acid groups as catalysts for the alpha-pinene methoxylation. Studies in Surface Science and Catalysis, 2008, 174, 1319-1322.	1.5	12
28	Hydrolysis of sucrose over composite catalysts. Chemical Engineering Journal, 2012, 184, 347-351.	12.7	12
29	Acetoxylation of camphene catalysed by beta zeolite. Catalysis Communications, 2008, 9, 2205-2208.	3.3	11
30	Dealing with Plastic Waste from Agriculture Activity. Agronomy, 2022, 12, 134.	3.0	11
31	Synthesis of Bio-fuel Additives From Glycerol Over Poly(Vinyl Alcohol) With Sulfonic Acid Groups. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2015, 37, 1928-1936.	2.3	10
32	New method for the immobilization of nitroxyl radical on mesoporous silica. Microporous and Mesoporous Materials, 2015, 203, 63-72.	4.4	10
33	Biodiesel production from waste cooking oil over sulfonated catalysts. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2016, 38, 174-182.	2.3	10
34	Valorization of Waste Cooking Oil into Biodiesel over an Anionic Resin as Catalyst. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2015, 37, 2309-2316.	2.3	6
35	Bioaugmentation an effective strategy to improve the performance of biobeds: a review. , 2020, , 207-240.		6
36	Acetalization of Glycerol with Citral over Heteropolyacids Immobilized on KIT-6. Catalysts, 2022, 12, 81.	3.5	6

#	Article	IF	CITATIONS
37	Chitosan with Sulfonic Groups: A Catalyst for the Esterification of Caprylic Acid with Methanol. Polymers, 2021, 13, 3924.	4.5	2
38	Bifunctional catalytic PVA composites for the one pot synthesis of camphor from camphene. Studies in Surface Science and Catalysis, 2006, , 673-680.	1.5	0
39	Biofuel Additives: Conversion of Glycerol with Benzyl Alcohol over SBAâ€15 with Sulfonic Acid Groups. , 0, , .		0
40	Silicates as Binders in the Preparation of Adsorbent Materials. , 0, , .		0