Zibo Chen

List of Publications by Citations

Source: https://exaly.com/author-pdf/8612673/zibo-chen-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

17 papers 1,035 to itations 10 papers 23 g-index 28.4 papers 28.4 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
17	A cargo-sorting DNA robot. <i>Science</i> , 2017 , 357,	33.3	287
16	De novo design of protein homo-oligomers with modular hydrogen-bond network-mediated specificity. <i>Science</i> , 2016 , 352, 680-7	33.3	194
15	De novo design of bioactive protein switches. <i>Nature</i> , 2019 , 572, 205-210	50.4	113
14	Accurate computational design of multipass transmembrane proteins. <i>Science</i> , 2018 , 359, 1042-1046	33.3	93
13	De novo design of protein logic gates. <i>Science</i> , 2020 , 368, 78-84	33.3	88
12	Programmable design of orthogonal protein heterodimers. <i>Nature</i> , 2019 , 565, 106-111	50.4	87
11	De novo design of tunable, pH-driven conformational changes. <i>Science</i> , 2019 , 364, 658-664	33-3	60
10	Rapid online buffer exchange for screening of proteins, protein complexes and cell lysates by native mass spectrometry. <i>Nature Protocols</i> , 2020 , 15, 1132-1157	18.8	46
9	Self-Assembling 2D Arrays with de Novo Protein Building Blocks. <i>Journal of the American Chemical Society</i> , 2019 , 141, 8891-8895	16.4	24
8	Functional expression and characterization of the envelope glycoprotein E1E2 heterodimer of hepatitis C virus. <i>PLoS Pathogens</i> , 2019 , 15, e1007759	7.6	15
7	Programmable protein circuit design. <i>Cell</i> , 2021 , 184, 2284-2301	56.2	8
6	A game-theoretic model of interactions between Hibiscus latent Singapore virus and tobacco mosaic virus. <i>PLoS ONE</i> , 2012 , 7, e37007	3.7	7
5	Modulating mechanical stability of heterodimerization between engineered orthogonal helical domains. <i>Nature Communications</i> , 2020 , 11, 4476	17.4	6
4	Rapid Online Buffer Exchange: A Method for Screening of Proteins, Protein Complexes, and Cell Lysates by Native Mass Spectrometry		4
3	Competitive Displacement of De Novo Designed HeteroDimers Can Reversibly Control Protein Protein Interactions and Implement Feedback in Synthetic Circuits 2022 , 1, 91-100		1
2	Interpreting neural networks for biological sequences by learning stochastic masks. <i>Nature Machine Intelligence</i> , 2022 , 4, 41-54	22.5	0
1	Creating the protein version of DNA base pairing. <i>Science</i> , 2019 , 366, 965	33.3	