
Carlos OrdoÑez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8612537/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A storyline view of the projected role of remote drivers on summer air stagnation in Europe and the United States. Environmental Research Letters, 2022, 17, 014026.	5.2	5
2	The impact of large-scale circulation on daily fine particulate matter (PM _{2.5}) over major populated regions of China in winter. Atmospheric Chemistry and Physics, 2022, 22, 6471-6487.	4.9	7
3	Modulation of European air quality by Euro-Atlantic weather regimes. Atmospheric Research, 2022, 277, 106292.	4.1	1
4	Assessing the value of air stagnation indices to reproduce PM10 variability in Europe. Atmospheric Research, 2021, 248, 105258.	4.1	18
5	Impact of climate change on Spanish electricity demand. Climatic Change, 2021, 165, 1.	3.6	12
6	Linking air stagnation in Europe with the synoptic- to large-scale atmospheric circulation. Weather and Climate Dynamics, 2021, 2, 675-694.	3.5	6
7	Early spring near-surface ozone in Europe during the COVID-19 shutdown: Meteorological effects outweigh emission changes. Science of the Total Environment, 2020, 747, 141322.	8.0	88
8	Distinct influences of large-scale circulation and regional feedbacks in two exceptional 2019 European heatwaves. Communications Earth & Environment, 2020, 1, .	6.8	46
9	Description and evaluation of the UKCA stratosphere–troposphere chemistry scheme (StratTrop vn) Tj ETQq1 1	0.784314 3.6	1 rgBT /Over
10	Impact of weather regimes on wind power variability in western Europe. Applied Energy, 2020, 264, 114731.	10.1	41
11	The differing impact of air stagnation on summer ozone across Europe. Atmospheric Environment, 2019, 219, 117062.	4.1	29
12	Role of the position of the North Atlantic jet in the variability and odds of extreme PM10 in Europe. Atmospheric Environment, 2019, 210, 35-46.	4.1	13
13	The European 2016/17 Drought. Journal of Climate, 2019, 32, 3169-3187.	3.2	86
14	Stratospheric Connection to the Abrupt End of the 2016/2017 Iberian Drought. Geophysical Research Letters, 2018, 45, 12,639.	4.0	32
15	Potential impacts of emissions associated with unconventional hydrocarbon extraction on UK air quality and human health. Air Quality, Atmosphere and Health, 2018, 11, 627-637.	3.3	12
16	Air stagnation in Europe: Spatiotemporal variability and impact on air quality. Science of the Total Environment, 2018, 645, 1238-1252.	8.0	38
17	Spatial clustering and meteorological drivers of summer ozone in Europe. Atmospheric Environment, 2017, 167, 496-510.	4.1	37
18	Strong signatures of high-latitude blocks and subtropical ridges in winter PM10 over Europe. Atmospheric Environment, 2017, 167, 49-60.	4.1	14

Carlos OrdoÑez

#	Article	IF	CITATIONS
19	Regional responses of surface ozone in Europe to the location of high-latitude blocks and subtropical ridges. Atmospheric Chemistry and Physics, 2017, 17, 3111-3131.	4.9	28
20	From Operational Ceilometer Network to Operational Lidar Network. EPJ Web of Conferences, 2016, 119, 27007.	0.3	9
21	On the variability of ozone in the equatorial eastern Pacific boundary layer. Journal of Geophysical Research D: Atmospheres, 2016, 121, 11,086.	3.3	2
22	Global impacts of tropospheric halogens (Cl, Br, I) on oxidants and composition in GEOS-Chem. Atmospheric Chemistry and Physics, 2016, 16, 12239-12271.	4.9	231
23	lodine's impact on tropospheric oxidants: aÂglobal model study in GEOS-Chem. Atmospheric Chemistry and Physics, 2016, 16, 1161-1186.	4.9	116
24	Evaluation of a regional air quality model using satellite column NO ₂ : treatment of observation errors and model boundary conditions and emissions. Atmospheric Chemistry and Physics, 2015, 15, 5611-5626.	4.9	20
25	The influence of synoptic weather regimes on UK air quality: regional model studies of tropospheric column NO ₂ . Atmospheric Chemistry and Physics, 2015, 15, 11201-11215.	4.9	20
26	Application of a statistical post-processing technique to a gridded, operational, air quality forecast. Atmospheric Environment, 2014, 98, 385-393.	4.1	27
27	lodine chemistry in the troposphere and its effect on ozone. Atmospheric Chemistry and Physics, 2014, 14, 13119-13143.	4.9	148
28	Modelling UK Air Quality for AQMEII2 with the Online Forecast Model AQUM. Springer Proceedings in Complexity, 2014, , 467-473.	0.3	1
29	Air quality modelling using the Met Office Unified Model (AQUM OS24-26): model description and initial evaluation. Geoscientific Model Development, 2013, 6, 353-372.	3.6	97
30	Evaluating global emission inventories of biogenic bromocarbons. Atmospheric Chemistry and Physics, 2013, 13, 11819-11838.	4.9	66
31	lodine chemistry in the eastern Pacific marine boundary layer. Journal of Geophysical Research D: Atmospheres, 2013, 118, 887-904.	3.3	46
32	Bromine and iodine chemistry in a global chemistry-climate model: description and evaluation of very short-lived oceanic sources. Atmospheric Chemistry and Physics, 2012, 12, 1423-1447.	4.9	193
33	Estimating the climate significance of halogen-driven ozone loss in the tropical marine troposphere. Atmospheric Chemistry and Physics, 2012, 12, 3939-3949.	4.9	157
34	Latitudinal distribution of reactive iodine in the Eastern Pacific and its link to open ocean sources. Atmospheric Chemistry and Physics, 2012, 12, 11609-11617.	4.9	68
35	Modelling future changes to the stratospheric source gas injection of biogenic bromocarbons. Geophysical Research Letters, 2012, 39, .	4.0	38
36	Global model simulations of air pollution during the 2003 European heat wave. Atmospheric Chemistry and Physics, 2010, 10, 789-815.	4.9	67

Carlos OrdoÑez

#	Article	IF	CITATIONS
37	Current status of the ability of the GEMS/MACC models to reproduce the tropospheric CO vertical distribution as measured by MOZAIC. Geoscientific Model Development, 2010, 3, 501-518.	3.6	56
38	Coupling Global Atmospheric Chemistry Transport Models to ECMWF Integrated Forecasts System for Forecast and Data Assimilation Within GEMS. , 2010, , 109-123.		3
39	Influence of various emission scenarios on ozone in Europe. Ecological Modelling, 2008, 217, 209-218.	2.5	12
40	Air pollution during the 2003 European heat wave as seen by MOZAIC airliners. Atmospheric Chemistry and Physics, 2008, 8, 2133-2150.	4.9	110
41	Influence of altitude on ozone levels and variability in the lower troposphere: a ground-based study for western Europe over the period 2001–2004. Atmospheric Chemistry and Physics, 2007, 7, 4311-4326.	4.9	131
42	Photochemical modelling in the Po basin with focus on formaldehyde and ozone. Atmospheric Chemistry and Physics, 2007, 7, 121-137.	4.9	20
43	Strong influence of lowermost stratospheric ozone on lower tropospheric background ozone changes over Europe. Geophysical Research Letters, 2007, 34, .	4.0	128
44	Nitrogen oxide measurements at rural sites in Switzerland: Bias of conventional measurement techniques. Journal of Geophysical Research, 2007, 112, .	3.3	220
45	A photochemical modeling study of ozone and formaldehyde generation and budget in the Po basin. Journal of Geophysical Research, 2007, 112, .	3.3	21
46	Comparison of 7 years of satellite-borne and ground-based tropospheric NO2measurements around Milan, Italy. Journal of Geophysical Research, 2006, 111, .	3.3	62
47	Aerosol and NO _x emission factors and submicron particle number size distributions in two road tunnels with different traffic regimes. Atmospheric Chemistry and Physics, 2006, 6, 2215-2230.	4.9	43
48	Changes of daily surface ozone maxima in Switzerland in all seasons from 1992 to 2002 and discussion of summer 2003. Atmospheric Chemistry and Physics, 2005, 5, 1187-1203.	4.9	164
49	Intercomparison of four different in-situ techniques for ambient formaldehyde measurements in urban air. Atmospheric Chemistry and Physics, 2005, 5, 2881-2900.	4.9	148
50	Volatile Organic Compounds in the Po Basin. Part A: Anthropogenic VOCs. Journal of Atmospheric Chemistry, 2005, 51, 271-291.	3.2	31
51	Volatile Organic Compounds in the Po Basin. Part B: Biogenic VOCs. Journal of Atmospheric Chemistry, 2005, 51, 293-315.	3.2	26
52	Real-World Emission Factors of Fine and Ultrafine Aerosol Particles for Different Traffic Situations in Switzerland. Environmental Science & Technology, 2005, 39, 8341-8350.	10.0	101