Claire Hellio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8611814/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Culture Conditions Affect Antioxidant Production, Metabolism and Related Biomarkers of the Microalgae Phaeodactylum tricornutum. Antioxidants, 2022, 11, 411.	2.2	9
2	Antifouling Activity of Halogenated Compounds Derived from the Red Alga Sphaerococcus coronopifolius: Potential for the Development of Environmentally Friendly Solutions. Marine Drugs, 2022, 20, 32.	2.2	5
3	Antifouling Activity of Meroterpenes Isolated from the Ascidian Aplidium aff. densum. Marine Biotechnology, 2021, 23, 51-61.	1.1	11
4	Bioactive Bromotyrosine Derivatives from the Pacific Marine Sponge Suberea clavata (Pulitzer-Finali,) Tj ETQq0 0	0 rgBT /Ov 2:2	verlock 10 Tf
5	Antioxidant Bioactivity of Extracts from Beach Cast Leaves of Posidonia oceanica (L.) Delile. Marine Drugs, 2021, 19, 560.	2.2	5
6	Using Virtual AChE Homology Screening to Identify Small Molecules With the Ability to Inhibit Marine Biofouling. Frontiers in Marine Science, 2021, 8, .	1.2	6
7	Reduction of potential ennoblement of stainless steel in natural seawater by an ecofriendly biopolymer. Journal of Environmental Chemical Engineering, 2020, 8, 103609.	3.3	5

8	Phidianidine A and Synthetic Analogues as Naturally Inspired Marine Antifoulants. Journal of Natural Products, 2020, 83, 3413-3423.	1.5	28
0	Electrophoretic deposition of zinc alginate coatings on stainless steel for marine antifouling	0.0	10

9	applications. Journal of Environmental Chemical Engineering, 2020, 8, 104246.	3.3	19
10	Exploring Antifouling Activity of Biosurfactants Producing Marine Bacteria Isolated from Gulf of California. International Journal of Molecular Sciences, 2020, 21, 6068.	1.8	18

11	Quorum Sensing Inhibitory and Antifouling Activities of New Bromotyrosine Metabolites from the Polynesian Sponge Pseudoceratina n. sp Marine Drugs, 2020, 18, 272.	2.2	21
12	Glycoglycerolipids From Sargassum vulgare as Potential Antifouling Agents. Frontiers in Marine Science, 2020, 7, .	1.2	16
10	The oceans are changing: impact of ocean warming and acidification on biofouling communities.		

	Biolouling, 2019, 35, 585-595.		
14	Biomimetic Approaches for the Development of New Antifouling Solutions: Study of Incorporation of Macroalgae and Sponge Extracts for the Development of New Environmentally-Friendly Coatings. International Journal of Molecular Sciences, 2019, 20, 4863.	1.8	20
15	Species-Specific Antioxidant Power and Bioactive Properties of the Extracts Obtained from Wild Mediterranean Calendula Spp. (Asteraceae). Applied Sciences (Switzerland), 2019, 9, 4627.	1.3	18
16	The Sponge-Associated Fungus Eurotium chevalieri MUT 2316 and its Bioactive Molecules: Potential Applications in the Field of Antifouling. Marine Biotechnology, 2019, 21, 743-752.	1.1	28
17	New Antimalarial and Antimicrobial Tryptamine Derivatives from the Marine Sponge Fascaplysinopsis reticulata. Marine Drugs, 2019, 17, 167.	2.2	28
	A new method for evaluation of antifouling activity of molecules against microalgal biofilms using		

A new method for evaluation of antifouling activity of molecules against microalgal biofilms using confocal laser scanning microscopy-microfluidic flow-cells. International Biodeterioration and 1.9 14 Biodegradation, 2019, 139, 54-61.

CLAIRE HELLIO

#	Article	IF	CITATIONS
19	From Ecology to Biotechnology, Study of the Defense Strategies of Algae and Halophytes (from) Tj ETQq1 1 0.784 International Journal of Molecular Sciences, 2019, 20, 881.	1314 rgBT 1.8	/Overlock 24
20	Development of alginate hydrogels active against adhesion of microalgae. Materials Letters, 2019, 239, 180-183.	1.3	9
21	In Silico Analysis of Pacific Oyster (Crassostrea gigas) Transcriptome over Developmental Stages Reveals Candidate Genes for Larval Settlement. International Journal of Molecular Sciences, 2019, 20, 197.	1.8	27
22	Design and Biological Evaluation of Antifouling Dihydrostilbene Oxime Hybrids. Marine Biotechnology, 2018, 20, 257-267.	1.1	18
23	Proteinaceous secretion of bioadhesive produced during crawling and settlement of Crassostrea gigas larvae. Scientific Reports, 2018, 8, 15298.	1.6	13
24	Marine bacteria from the Gulf of California with antimicrofouling activity against colonizing bacteria and microalgae. Revista De Biologia Tropical, 2018, 66, .	0.1	5
25	Probing the Structure–Activity Relationship of the Natural Antifouling Agent Polygodial against both Micro- and Macrofoulers by Semisynthetic Modification. Journal of Natural Products, 2017, 80, 515-525.	1.5	33
26	Sponge-Inspired Dibromohemibastadin Prevents and Disrupts Bacterial Biofilms without Toxicity. Marine Drugs, 2017, 15, 222.	2.2	10
27	Anti-Biofilm Effect of Biodegradable Coatings Based on Hemibastadin Derivative in Marine Environment. International Journal of Molecular Sciences, 2017, 18, 1520.	1.8	19
28	SAR of Sponge-Inspired Hemibastadin Congeners Inhibiting Blue Mussel PhenolOxidase. Marine Drugs, 2015, 13, 3061-3071.	2.2	13
29	Cystophloroketals A–E, Unusual Phloroglucinol–Meroterpenoid Hybrids from the Brown Alga <i>Cystoseira tamariscifolia</i> . Journal of Natural Products, 2015, 78, 1663-1670.	1.5	27
30	Evaluation of cationic micropeptides derived from the innate immune system as inhibitors of marine biofouling. Biofouling, 2015, 31, 393-403.	0.8	30
31	Protocol for Assessing Antifouling Activities of Macroalgal Extracts. Methods in Molecular Biology, 2015, 1308, 421-435.	0.4	8
32	The Bromotyrosine Derivative Ianthelline Isolated from the Arctic Marine Sponge Stryphnus fortis Inhibits Marine Micro- and Macrobiofouling. Marine Biotechnology, 2014, 16, 684-694.	1.1	41
33	Antifouling activity of symbiotic bacteria from sponge AplysinaÂgerardogreeni. International Biodeterioration and Biodegradation, 2014, 90, 64-70.	1.9	22
34	Marine bacterial inhibitors from the sponge-derived fungus Aspergillus sp Tetrahedron Letters, 2014, 55, 2789-2792.	0.7	55
35	Antifouling Compounds from the Sub-Arctic Ascidian <i>Synoicum pulmonaria</i> : Synoxazolidinones A and C, Pulmonarins A and B, and Synthetic Analogues. Journal of Natural Products, 2014, 77, 2105-2113.	1.5	77
36	Bioinspired synthetic macroalgae: Examples from nature for antifouling applications. International Biodeterioration and Biodegradation, 2014, 86, 6-13.	1.9	70

Claire Hellio

#	Article	IF	CITATIONS
37	Antifouling activity of novel polyisoprene-based coatings made from photocurable natural rubber derived oligomers. Progress in Organic Coatings, 2013, 76, 1203-1214.	1.9	36
38	Sargassum polyceratium (Phaeophyceae, Fucaceae) surface molecule activity towards fouling organisms and embryonic development of benthic species. Botanica Marina, 2011, 54, .	0.6	27
39	Investigation of Chondrus crispus as a potential source of new antifouling agents. International Biodeterioration and Biodegradation, 2011, 65, 939-946.	1.9	45
40	Antifouling Bastadin Congeners Target Mussel Phenoloxidase and Complex Copper(II) Ions. Marine Biotechnology, 2011, 13, 1148-1158.	1.1	29
41	Antifouling activity against barnacle cypris larvae: Do target species matter (Amphibalanus amphitrite) Tj ETQq1	1 9.78431	4 rgBT /Ove
42	Anti-microfouling Activity of Lipidic Metabolites from the Invasive Brown Alga Sargassum muticum (Yendo) Fensholt. Marine Biotechnology, 2010, 12, 52-61.	1.1	70
43	Antifouling activity as a function of population variation in Sargassum vulgare from the littoral of Rio de Janeiro (Brazil). Journal of Applied Phycology, 2010, 22, 717-724.	1.5	42
44	Bioassays and field immersion tests: a comparison of the antifouling activity of copper-free poly(methacrylic)-based coatings containing tertiary amines and ammonium salt groups. Biofouling, 2010, 26, 769-777.	0.8	36
45	Algae as marine fouling organisms: adhesion damage and prevention. , 2009, , 80-112.		12
46	Laboratory bioassays for screening marine antifouling compounds. , 2009, , 275-307.		13
47	Challenges for the Development of New Non-Toxic Antifouling Solutions. International Journal of Molecular Sciences, 2009, 10, 4623-4637.	1.8	135
48	Antifouling Activity of Meroditerpenoids from the Marine Brown Alga <i>Halidrys siliquosa</i> . Journal of Natural Products, 2008, 71, 1121-1126.	1.5	57
49	Seasonal variation in antifouling activity of crude extracts of the brown alga Bifurcaria bifurcata (Cystoseiraceae) against cyprids of Balanus amphitrite and the marine bacteria Cobetia marina and Pseudoalteromonas haloplanktis. Journal of Experimental Marine Biology and Ecology, 2004, 313, 47-62.	0.7	113
50	Seasonal Variation of Antifouling Activities of Marine Algae from the Brittany Coast (France). Marine Biotechnology, 2004, 6, 67-82.	1.1	132
51	Screening of Marine Algal Extracts for Anti-settlement Activities against Microalgae and Macroalgae. Biofouling, 2002, 18, 205-215.	0.8	87
52	Inhibition of marine bacteria by extracts of macroalgae: potential use for environmentally friendly antifouling paints. Marine Environmental Research, 2001, 52, 231-247.	1.1	179
53	Marine antifoulants from <i>bifurcaria bifurcata</i> (phaeophyceae, cystoseiraceae) and other brown macroalgae. Biofouling, 2001, 17, 189-201.	0.8	47
54	Inhibition of the development of microorganisms (bacteria and fungi) by extracts of marine algae from Brittany, France. Applied Microbiology and Biotechnology, 2000, 54, 543-549.	1.7	119

#	Article	IF	CITATIONS
55	Phenoloxidase (E.C. 1.14.18.1) from the byssus gland ofMytilus edulis:Purification, partial characterization and application for screening products with potential antifouling activities. Biofouling, 2000, 16, 235-244.	0.8	70