List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8611794/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rupture Process of the 2004 Sumatra-Andaman Earthquake. Science, 2005, 308, 1133-1139.	6.0	637
2	Sharp Sides to the African Superplume. Science, 2002, 296, 1850-1852.	6.0	350
3	Evidence for strong shear velocity reductions and velocity gradients in the lower mantle beneath Africa. Geophysical Research Letters, 1998, 25, 4245-4248.	1.5	137
4	Energy radiation from the Sumatra earthquake. Nature, 2005, 434, 582-582.	13.7	136
5	Seismological constraints on the South African superplume; could be the oldest distinct structure on earth. Earth and Planetary Science Letters, 2003, 206, 119-131.	1.8	95
6	Three-dimensional structure of the African superplume from waveform modelling. Geophysical Journal International, 2005, 161, 283-294.	1.0	71
7	The Pawnee earthquake as a result of the interplay among injection, faults and foreshocks. Scientific Reports, 2017, 7, 4945.	1.6	68
8	Ridge-like lower mantle structure beneath South Africa. Journal of Geophysical Research, 2003, 108, .	3.3	67
9	Source mechanism of strong aftershocks (M s⩾5.6) of the 2008/05/12 Wenchuan earthquake and the implication for seismotectonics. Science in China Series D: Earth Sciences, 2009, 52, 739-753.	0.9	65
10	A persistent localized microseismic source near the Kyushu Island, Japan. Geophysical Research Letters, 2010, 37, .	1.5	59
11	Seismic evidence for ultralow-velocity zones beneath Africa and eastern Atlantic. Journal of Geophysical Research, 2000, 105, 23865-23878.	3.3	57
12	Shallow magma chamber under the Wudalianchi Volcanic Field unveiled by seismic imaging with dense array. Geophysical Research Letters, 2016, 43, 4954-4961.	1.5	55
13	Retrieval of Moho-reflected shear wave arrivals from ambient seismic noise. Geophysical Journal International, 2010, , no-no.	1.0	54
14	Deep mantle structure and the postperovskite phase transition. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 17257-17263.	3.3	47
15	Wave separation for the great Sumatra-Andaman earthquake with regional seismic array. Earthquake Science, 2011, 24, 127-132.	0.4	47
16	Mitigating artifacts in back-projection source imaging with implications for frequency-dependent properties of the Tohoku-Oki earthquake. Earth, Planets and Space, 2012, 64, 1101-1109.	0.9	46
17	Evidence for a sharp lateral variation of velocity at the core–mantle boundary from multipathed PKPab. Earth and Planetary Science Letters, 2001, 189, 155-164.	1.8	45
18	Source locations of teleseismic P, SV, and SH waves observed in microseisms recorded by a large aperture seismic array in China. Earth and Planetary Science Letters, 2016, 449, 39-47.	1.8	45

#	Article	IF	CITATIONS
19	<i>Pn</i> tomography with Moho depth correction from eastern Europe to western China. Journal of Geophysical Research: Solid Earth, 2017, 122, 1284-1301.	1.4	44
20	Uppermost mantle structure of the eastern margin of the Tibetan plateau from interstation Pn traveltime difference tomography. Earth and Planetary Science Letters, 2012, 335-336, 195-205.	1.8	42
21	Focal Mechanisms of the 2013 Mw 6.6 Lushan, China Earthquake and High-Resolution Aftershock Relocations. Seismological Research Letters, 2014, 85, 8-14.	0.8	41
22	Inferring Earth's discontinuous chemical layering from the 660-kilometer boundary topography. Science, 2019, 363, 736-740.	6.0	41
23	Seismic ocean thermometry. Science, 2020, 369, 1510-1515.	6.0	41
24	Constructing synthetics from deep earth tomographic models. Geophysical Journal International, 2000, 140, 71-82.	1.0	40
25	Anomalously steep dips of earthquakes in the 2011 Tohoku-Oki source region and possible explanations. Earth and Planetary Science Letters, 2012, 353-354, 121-133.	1.8	39
26	Further constraints on the African superplume structure. Physics of the Earth and Planetary Interiors, 2003, 140, 243-251.	0.7	36
27	Direct measures of lateral velocity variation in the deep Earth. Journal of Geophysical Research, 2009, 114, .	3.3	36
28	Horizontal transition from fast to slow structures at the core–mantle boundary; South Atlantic. Earth and Planetary Science Letters, 2001, 187, 301-310.	1.8	34
29	Estimating Subsurface Shear Velocity with Radial to Vertical Ratio of Local P Waves. Seismological Research Letters, 2014, 85, 82-90.	0.8	34
30	Low-velocity structure beneath Africa from forward modeling. Earth and Planetary Science Letters, 1999, 170, 497-507.	1.8	33
31	Probing an ultra-low velocity zone at the core mantle boundary with P and S waves. Geophysical Research Letters, 2001, 28, 2345-2348.	1.5	31
32	Velocity and density characteristics of subducted oceanic crust and the origin of lower-mantle heterogeneities. Nature Communications, 2020, 11, 64.	5.8	30
33	Earthquake Source Mechanism and Rupture Directivity of the 12 September 2016 MwÂ5.5 Gyeongju, South Korea, Earthquake. Bulletin of the Seismological Society of America, 2017, 107, 2525-2531.	1.1	27
34	The April 14th, 2010 Yushu earthquake, a devastating earthquake with foreshocks. Science China Earth Sciences, 2010, 53, 791-793.	2.3	26
35	Twin enigmatic microseismic sources in the Gulf of Guinea observed on intercontinental seismic stations. Geophysical Journal International, 2013, 194, 362-366.	1.0	25
36	CAPjoint, A Computer Software Package for Joint Inversion of Moderate Earthquake Source Parameters with Local and Teleseismic Waveforms. Seismological Research Letters, 2015, 86, 432-441.	0.8	25

#	Article	IF	CITATIONS
37	Source Parameters of Three Moderate Size Earthquakes in Weiyuan, China, and Their Relations to Shale Gas Hydraulic Fracturing. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB019932.	1.4	24
38	Subsurface Shear Wave Velocity Characterization Using <i>P</i> -Wave Seismograms in Central and Eastern North America. Earthquake Spectra, 2016, 32, 143-169.	1.6	22
39	Rupture directivity of the August 3rd, 2014 Ludian earthquake (Yunan, China). Science China Earth Sciences, 2015, 58, 795-804.	2.3	21
40	Joint Inversion of Bodyâ€Wave Receiver Function and Rayleighâ€Wave Ellipticity. Bulletin of the Seismological Society of America, 2016, 106, 537-551.	1.1	21
41	Approximate 3D Body-Wave Synthetics for Tomographic Models. Bulletin of the Seismological Society of America, 2005, 95, 212-224.	1.1	20
42	Earthquake Centroid Locations Using Calibration from Ambient Seismic Noise. Bulletin of the Seismological Society of America, 2011, 101, 1438-1445.	1.1	20
43	Crustal radial anisotropy beneath Cameroon from ambient noise tomography. Tectonophysics, 2017, 696-697, 37-51.	0.9	20
44	Joint Inversion for Earthquake Depths Using Local Waveforms and Amplitude Spectra of Rayleigh Waves. Pure and Applied Geophysics, 2017, 174, 261-277.	0.8	20
45	An SEM-DSM three-dimensional hybrid method for modelling teleseismic waves with complicated source-side structures. Geophysical Journal International, 2018, 215, 133-154.	1.0	20
46	Solid–liquid transitions of sodium chloride at high pressures. Journal of Chemical Physics, 2006, 125, 154510.	1.2	19
47	A shallow aftershock sequence in the north-eastern end of the Wenchuan earthquake aftershock zone. Science China Earth Sciences, 2010, 53, 1655-1664.	2.3	19
48	Resolving Shallow Shear-Wave Velocity Structure beneath Station CBN by Waveform Modeling of the Mw 5.8 Mineral, Virginia, Earthquake Sequence. Bulletin of the Seismological Society of America, 2014, 104, 944-952.	1.1	19
49	Joint Inversion of Crustal Structure with the Rayleigh Wave Phase Velocity Dispersion and the ZH Ratio. Pure and Applied Geophysics, 2015, 172, 2585-2600.	0.8	19
50	Groundâ€Motion Simulations of 1811–1812 New Madrid Earthquakes, Central United States. Bulletin of the Seismological Society of America, 2015, 105, 1961-1988.	1.1	19
51	Rapid Source Estimation from Global Calibrated Paths. Seismological Research Letters, 2010, 81, 498-504.	0.8	17
52	Seismic Imaging of Source Region in the 1976 MsÂ7.8 Tangshan Earthquake Sequence and Its Implications for the Seismogenesis of Intraplate Earthquakes. Bulletin of the Seismological Society of America, 2018, 108, 1302-1313.	1.1	17
53	Strong aftershocks in the northern segment of the Wenchuan earthquake rupture zone and their seismotectonic implications. Earth, Planets and Space, 2010, 62, 881-886.	0.9	16
54	Source Mechanism and Rupture Directivity of the 18 May 2009 MW 4.6 Inglewood, California, Earthquake. Bulletin of the Seismological Society of America, 2010, 100, 3269-3277.	1.1	16

#	Article	IF	CITATIONS
55	The M5.0 Suining-Tongnan (China) earthquake of 31 January 2010: A destructive earthquake occurring in sedimentary cover. Science Bulletin, 2011, 56, 521-525.	1.7	16
56	Constraining the short scale core–mantle boundary topography beneath Kenai Peninsula (Alaska) with amplitudes of core-reflected PcP wave. Physics of the Earth and Planetary Interiors, 2014, 236, 60-68.	0.7	16
57	Receiver function HV ratio: a new measurement for reducing non-uniqueness of receiver function waveform inversion. Geophysical Journal International, 2018, 212, 1475-1485.	1.0	16
58	Magnitude estimation for early warning applications using the initial part of P waves: A case study on the 2008 Wenchuan sequence. Geophysical Research Letters, 2009, 36, .	1.5	15
59	Interstation Pg and Sg differential traveltime tomography in the northeastern margin of the Tibetan plateau: Implications for spatial extent of crustal flow and segmentation of the Longmenshan fault zone. Physics of the Earth and Planetary Interiors, 2014, 227, 30-40.	0.7	15
60	Crust-mantle coupling mechanism in Cameroon, West Africa, revealed by 3D S-wave velocity and azimuthal anisotropy. Physics of the Earth and Planetary Interiors, 2018, 274, 195-213.	0.7	15
61	Rupture Directivity of the 2019 MwÂ5.8 Changning, Sichuan, China, Earthquake and Implication for Induced Seismicity. Bulletin of the Seismological Society of America, 2020, 110, 2138-2153.	1.1	15
62	Correction to "A persistent localized microseismic source near the Kyushu Island, Japan― Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	14
63	Rapid Seismological Quantification of Source Parameters of the 25 April 2015 Nepal Earthquake. Seismological Research Letters, 2015, 86, 1568-1577.	0.8	14
64	Constraints on small-scale heterogeneity in the lowermost mantle from observations of near podal PcP precursors. Earth and Planetary Science Letters, 2018, 489, 267-276.	1.8	14
65	A Comparison of Synthetic Seismograms for 2D Structures: Semianalytical versus Numerical. Bulletin of the Seismological Society of America, 2003, 93, 2752-2757.	1.1	13
66	Seismic modeling constraints on the South African super plume. Geophysical Monograph Series, 2005, , 63-81.	0.1	13
67	P n tomographic velocity and anisotropy beneath the Tibetan Plateau and the adjacent regions. Earth, Planets and Space, 2011, 63, 1169-1173.	0.9	13
68	Crustal rheology from focal depths in the North China Basin. Earth and Planetary Science Letters, 2018, 497, 123-138.	1.8	13
69	Observation of Core Phase ScS from the Mw 9.0 Tohoku-Oki Earthquake with High-Rate GPS. Seismological Research Letters, 2013, 84, 594-599.	0.8	12
70	The effects of core-reflected waves on finite fault inversions with teleseismic body wave data. Geophysical Journal International, 2017, 211, 936-951.	1.0	12
71	Slip model for the 2011 M w 9.0 Sendai (Japan) earthquake and its M w 7.9 aftershock derived from GPS data. Science Bulletin, 2011, 56, 2941-2947.	1.7	11
72	Locating earthquakes with surface waves and centroid moment tensor estimation. Journal of Geophysical Research, 2012, 117, .	3.3	11

#	Article	IF	CITATIONS
73	Inversion of Source Parameters for Moderate Earthquakes Using Short-Period Teleseismic P Waves. Pure and Applied Geophysics, 2014, 171, 1329-1341.	0.8	11
74	The 1 May 2017 British Columbiaâ€Alaska Earthquake Doublet and Implication for Complexity Near Southern End of Denali Fault System. Geophysical Research Letters, 2018, 45, 5937-5947.	1.5	11
75	Teleseismic Waveform Complexities Caused by Near Trench Structures and Their Impacts on Earthquake Source Study: Application to the 2015 Illapel Aftershocks (Central Chile). Journal of Geophysical Research: Solid Earth, 2019, 124, 870-889.	1.4	11
76	Rapid earthquake focal mechanism inversion using high-rate GPS velometers in sparse network. Science China Earth Sciences, 2015, 58, 1970-1981.	2.3	10
77	Synchronizing Intercontinental Seismic Networks Using the 26Âs Persistent Localized Microseismic Source. Bulletin of the Seismological Society of America, 2015, 105, 2101-2108.	1.1	10
78	Accuracy of the water column approximation in numerically simulating propagation of teleseismic <i>PP</i> waves and Rayleigh waves. Geophysical Journal International, 2016, 206, 1315-1326.	1.0	10
79	Short period ScP phase amplitude calculations for core–mantle boundary with intermediate scale topography. Physics of the Earth and Planetary Interiors, 2016, 253, 64-73.	0.7	10
80	Rapid rupture directivity determination of moderate dipâ€slip earthquakes with teleseismic body waves assuming reduced finite source approximation. Journal of Geophysical Research: Solid Earth, 2017, 122, 5344-5368.	1.4	10
81	Complex Source Behaviors and Spatiotemporal Evolution of Seismicity During the 2015–2016 Earthquake Sequence in Cushing, Oklahoma. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022168.	1.4	10
82	Densification of silica glass at ambient pressure. Journal of Chemical Physics, 2006, 125, 154511.	1.2	9
83	Influence of the off-great-circle propagation of Rayleigh waves on event-based surface wave tomography in Northeast China. Geophysical Journal International, 2018, 214, 1105-1124.	1.0	9
84	gCAPjoint, A Software Package for Full Moment Tensor Inversion of Moderately Strong Earthquakes with Local and Teleseismic Waveforms. Seismological Research Letters, 2020, 91, 3550-3562.	0.8	9
85	Further constraints on the shear wave velocity structure of Cameroon from joint inversion of receiver function, Rayleigh wave dispersion and ellipticity measurements. Geophysical Journal International, 2019, 217, 589-619.	1.0	9
86	Relationship of D″ structure with the velocity variations near the inner-core boundary. Geophysical Research Letters, 2002, 29, 22-1.	1.5	8
87	Evidence for an Independent 26-s Microseismic Source near the Vanuatu Islands. Pure and Applied Geophysics, 2014, 171, 2155-2163.	0.8	8
88	On the accuracy of long-period Rayleigh waves extracted from ambient noise. Geophysical Journal International, 2016, 206, 48-55.	1.0	8
89	Assessing the short-term clock drift of early broadband stations with burst events of the 26Âs persistent and localized microseism. Geophysical Journal International, 2018, 212, 324-332.	1.0	8
90	Observation of Teleseismic <i>S</i> Wave Microseisms Generated by Typhoons in the Western Pacific Ocean. Geophysical Research Letters, 2020, 47, e2020GL089031.	1.5	8

#	Article	IF	CITATIONS
91	Analysis of the 2017 June Maoxian landslide processes with force histories from seismological inversion and terrain features. Geophysical Journal International, 2020, 222, 1965-1976.	1.0	8
92	Near surface velocity and QS structure of the Quaternary sediment in Bohai basin, China. Earthquake Science, 2009, 22, 451-458.	0.4	7
93	An algorithm for computing synthetic body waves due to underside conversion on an undulating interface and application to the 410Âkm discontinuity. Geophysical Journal International, 2017, 210, 1858-1871.	1.0	7
94	Real-time seismology for the 05/12/2008 Wenchuan earthquake of China: A retrospective view. Science in China Series D: Earth Sciences, 2009, 52, 155-165.	0.9	6
95	Southeast Indian Ocean-Ridge earthquake sequences from cross-correlation analysis of hydroacoustic data. Geophysical Journal International, 2009, 179, 401-407.	1.0	6
96	S n velocity tomography beneath the Himalayan collision zone and surrounding regions. Earth, Planets and Space, 2013, 65, 725-730.	0.9	6
97	Validating Accuracy of Rayleigh-Wave Dispersion Extracted from Ambient Seismic Noise Via Comparison with Data from a Ground-Truth Earthquake. Bulletin of the Seismological Society of America, 2014, 104, 2133-2141.	1.1	6
98	Resolving Horizontal Rupture Directivity of Moderate Crustal Earthquake in Sparse Network With Ambient Noise Location. Journal of Geophysical Research: Solid Earth, 2018, 123, 533-552.	1.4	6
99	Insight into large-scale topography on analysis of high-frequency Rayleigh waves. Journal of Applied Geophysics, 2018, 150, 1-10.	0.9	6
100	Multipathing Rayleigh Waves From Longâ€Distance Noise Cross Correlation Along an Oceanâ€Continent Boundary (Alaska to California). Geophysical Research Letters, 2018, 45, 6051-6060.	1.5	6
101	The 15 February 2014 MwÂ4.1 South Carolina Earthquake Sequence: Aftershock Productivity, Hypocentral Depths, and Stress Drops. Seismological Research Letters, 2020, 91, 452-464.	0.8	6
102	Waveform Retrieval and Phase Identification for Seismic Data from the CASS Experiment. Pure and Applied Geophysics, 2013, 170, 815-830.	0.8	5
103	Constraining shear wave velocity and density contrast at the inner core boundary with PKiKP/P amplitude ratio. Journal of Earth Science (Wuhan, China), 2013, 24, 716-724.	1.1	5
104	Ground Truth Location of Earthquakes by Use of Ambient Seismic Noise From a Sparse Seismic Network: A Case Study in Western Australia. Pure and Applied Geophysics, 2015, 172, 1397-1407.	0.8	5
105	Seismic attenuation in the lower mantle beneath Northeast China constrained from short-period reflected core phases at short epicentral distances. Earth and Planetary Physics, 2019, 3, 537-546.	0.4	5
106	Applying InSAR technique to accurately relocate the epicentre for the 1999 <i>M</i> _s = 5.6 Kuqa earthquake in Xinjiang province, China. Geophysical Journal International, 2009, 176, 107-112.	1.0	4
107	Composition of high frequency ambient noise from cross-correlation: A case study using a small aperture array. Earthquake Science, 2010, 23, 433-438.	0.4	4
108	Determination of focal depth by two waveformbased methods: A case study for the 2008 Panzhihua earthquake. Earthquake Science, 2011, 24, 321-328.	0.4	4

#	Article	IF	CITATIONS
109	The Contribution of Postcritical Moho ReflectionsSmSto Ground Motions of the 2008 MwÂ7.9 Wenchuan Earthquake. Bulletin of the Seismological Society of America, 2019, 109, 298-311.	1.1	4
110	Focal mechanisms of the 2017 North Korean nuclear test and its early collapse event. Geophysical Journal International, 2020, 220, 737-752.	1.0	4
111	Relocation of the 17 June 2017 Nuugaatsiaq (Greenland) Landslide Based on Green's Functions From Ambient Seismic Noises. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB018947.	1.4	4
112	Surface motion of a fluid planet induced by impacts. Geophysical Journal International, 2006, 167, 445-452.	1.0	3
113	Stationary phase approximation in the ambient noise method revisited. Earthquake Science, 2010, 23, 425-431.	0.4	3
114	Source model of the 11th July 2004 Zhongba earthquake revealed from the joint inversion of InSAR and seismological data. Earthquake Science, 2011, 24, 207-220.	0.4	3
115	Evidence for P′P′ asymmetrical scattering at near podal distances. Geophysical Research Letters, 2012, 39, .	1.5	3
116	Magnitude and rupture duration from high frequency teleseismic P wave with projected landweber deconvolution. Science China Earth Sciences, 2013, 56, 13-21.	2.3	3
117	Millimeter-level ultra-long period multiple Earth-circling surface waves retrieved from dense high-rate GPS network. Earth and Planetary Science Letters, 2019, 525, 115705.	1.8	3
118	Rupture Directivity Analysis of the 2018 Hokkaido Eastern Iburi Earthquake and Its Seismotectonic Implication. Seismological Research Letters, 2019, 90, 2121-2131.	0.8	3
119	Resolving Focal Depth in Sparse Network with Local Depth Phase <i>sPL</i> : A Case Study for the 2011 Mineral, Virginia, Earthquake Sequence. Bulletin of the Seismological Society of America, 2019, 109, 745-755.	1.1	3
120	Shallow Shear-Wave Velocity Structure in Oklahoma Based on the Joint Inversion of Ambient Noise Dispersion and Teleseismic <i>P</i> -Wave Receiver Functions. Bulletin of the Seismological Society of America, 2021, 111, 654-670.	1.1	3
121	Determining Crustal Attenuation With Seismic <i>T</i> Waves in Southern Africa. Geophysical Research Letters, 2021, 48, e2021GL094410.	1.5	3
122	An iterative algorithm for separation of <i>S</i> and <i>ScS</i> waves of great earthquakes. Geophysical Journal International, 2012, 191, 591-600.	1.0	2
123	Seismological Constraints on the Smallâ€Scale Heterogeneity in the Lowermost Mantle Beneath East Asia and Implication for Its Mineralogical Origin. Geophysical Research Letters, 2019, 46, 5225-5233.	1.5	2
124	Constraints on crust-mantle transition zone with Pn waveforms: A case study of eastern China and southern Korean Peninsula. Physics of the Earth and Planetary Interiors, 2019, 289, 11-19.	0.7	2
125	Improving seismic remote sensing of typhoon with a three-dimensional Earth model. Journal of the Acoustical Society of America, 2020, 148, 478-491.	0.5	2
126	Observations of PKKPab Diffraction Waves Well Beyond Cutoff Distance. Seismological Research Letters, 2022, 93, 376-385.	0.8	2

#	Article	IF	CITATIONS
127	Effects of Secondary Sources of Underground Nuclear Explosions on the mb : Ms Criterion and Implications for Discrimination of the DPRK's Nuclear Tests. Bulletin of the Seismological Society of America, 2021, 111, 590-605.	1.1	2
128	Generation mechanism of the 26 s and 28 s tremors in the Gulf of Guinea from statistical analysis of magnitudes and event intervals. Earth and Planetary Science Letters, 2022, 578, 117334.	1.8	2
129	Damages to optical silica glass: processes and mechanisms. , 2006, , .		1
130	Crustal S-wave velocity structure of the Yellowstone region using a seismic ambient noise method. Earthquake Science, 2013, 26, 283-291.	0.4	1
131	Infrasonic Signals Associated with the Aftershocks of LuShan Earthquake of April 20 th , 2013. Journal of Low Frequency Noise Vibration and Active Control, 2014, 33, 113-123.	1.3	1
132	Ground Surface Deformation Caused by the MwÂ5.8 Early Strong Aftershock following the 13 November 2016 MwÂ7.8 KaikÅura Mainshock. Seismological Research Letters, 2018, 89, 2214-2226.	0.8	1
133	Evaluating Global Tomography Models With Antipodal Ambient Noise Cross orrelation Functions. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB020444.	1.4	1
134	Giant impact-induced blow-off of primordial atmosphere. , 2005, , .		0
135	Effects of sedimentary layer on earthquake source modeling from geodetic inversion. Earthquake Science, 2011, 24, 221-227.	0.4	0
136	Preface to the special issue on earthquake geodesy. Earthquake Science, 2011, 24, 133-134.	0.4	0
137	Preface to the special issue on Lushan earthquake. Earthquake Science, 2013, 26, 151-152.	0.4	0
138	An Adaptive 2D Planar Projection and Its Application in Geoscience Studies. Journal of Earth Science (Wuhan, China), 2015, 26, 724-728.	1.1	0
139	Forward to the Special Issue in Physics of the Earth and Planetary Interiors on Multiscale Assessment of Micro-Seismicity and Slow Earthquakes. Physics of the Earth and Planetary Interiors, 2016, 261, 1-2.	0.7	0
140	Anomalous <i>Pn</i> Amplitudes through the Southeastern Tarim Basin and Western Tien Shan along Two Profiles: Observations and Interpretations. Bulletin of the Seismological Society of America, 2017, 107, 760-769.	1.1	0
141	Multiscale assessment of micro-seismicity and slow earthquakes. Physics of the Earth and Planetary Interiors, 2017, 264, 18-19.	0.7	0
142	Imaging the Crustal Structure with Multiple Seismic Measurements. Acta Geologica Sinica, 2019, 93, 290-290.	0.8	0
143	<i>Erratum to</i> Effects of Secondary Sources of Underground Nuclear Explosions on the mb:Ms Criterion and Implications for Discrimination of the DPRK's Nuclear Tests. Bulletin of the Seismological Society of America, 0, ,	1.1	0
144	Ground Surface Deformation Caused by the MwÂ5.8 Early Strong Aftershock following the 13 November 2016 MwÂ7.8 KaikÅura Mainshock. Seismological Research Letters, 0, , .	0.8	0