## Russell L Scott

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8611337/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nature<br>Climate Change, 2016, 6, 1023-1027.                                                                            | 8.1 | 734       |
| 2  | The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Scientific Data, 2020, 7, 225.                                                                                            | 2.4 | 646       |
| 3  | ECOHYDROLOGICAL IMPLICATIONS OF WOODY PLANT ENCROACHMENT. Ecology, 2005, 86, 308-319.                                                                                                                           | 1.5 | 582       |
| 4  | Measuring soil moisture content nonâ€invasively at intermediate spatial scale using cosmicâ€ray<br>neutrons. Geophysical Research Letters, 2008, 35, .                                                          | 1.5 | 372       |
| 5  | Warm spring reduced carbon cycle impact of the 2012 US summer drought. Proceedings of the<br>National Academy of Sciences of the United States of America, 2016, 113, 5880-5885.                                | 3.3 | 340       |
| 6  | Reduction in carbon uptake during turn of the century drought in western North America. Nature<br>Geoscience, 2012, 5, 551-556.                                                                                 | 5.4 | 263       |
| 7  | Evapotranspiration on western U.S. rivers estimated using the Enhanced Vegetation Index from MODIS and data from eddy covariance and Bowen ratio flux towers. Remote Sensing of Environment, 2005, 97, 337-351. | 4.6 | 253       |
| 8  | Estimation of net ecosystem carbon exchange for the conterminous United States by combining MODIS and AmeriFlux data. Agricultural and Forest Meteorology, 2008, 148, 1827-1847.                                | 1.9 | 221       |
| 9  | Partitioning overstory and understory evapotranspiration in a semiarid savanna woodland from the isotopic composition of water vapor. Agricultural and Forest Meteorology, 2003, 119, 53-68.                    | 1.9 | 214       |
| 10 | A continuous measure of gross primary production for the conterminous United States derived from MODIS and AmeriFlux data. Remote Sensing of Environment, 2010, 114, 576-591.                                   | 4.6 | 210       |
| 11 | Ecohydrological impacts of woody-plant encroachment: seasonal patterns of water and carbon<br>dioxide exchange within a semiarid riparian environment. Global Change Biology, 2006, 12, 311-324.                | 4.2 | 201       |
| 12 | Remote sensing of dryland ecosystem structure and function: Progress, challenges, and opportunities. Remote Sensing of Environment, 2019, 233, 111401.                                                          | 4.6 | 193       |
| 13 | Effects of seasonal drought on net carbon dioxide exchange from a woodyâ€plantâ€encroached semiarid<br>grassland. Journal of Geophysical Research, 2009, 114, .                                                 | 3.3 | 187       |
| 14 | Partitioning of evapotranspiration and its relation to carbon dioxide exchange in a Chihuahuan<br>Desert shrubland. Hydrological Processes, 2006, 20, 3227-3243.                                                | 1.1 | 184       |
| 15 | <scp>CO</scp> <sub>2</sub> exchange and evapotranspiration across dryland ecosystems of southwestern North America. Global Change Biology, 2017, 23, 4204-4221.                                                 | 4.2 | 164       |
| 16 | Interannual and seasonal variation in fluxes of water and carbon dioxide from a riparian woodland ecosystem. Agricultural and Forest Meteorology, 2004, 122, 65-84.                                             | 1.9 | 158       |
| 17 | Assessing net ecosystem carbon exchange of U.S. terrestrial ecosystems by integrating eddy covariance flux measurements and satellite observations. Agricultural and Forest Meteorology, 2011, 151, 60-69.      | 1.9 | 157       |
| 18 | Carbon dioxide exchange in a semidesert grassland through droughtâ€induced vegetation change.<br>Journal of Geophysical Research, 2010, 115, .                                                                  | 3.3 | 156       |

| #  | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Productivity of North American grasslands is increased under future climate scenarios despite rising<br>aridity. Nature Climate Change, 2016, 6, 710-714.                                                   | 8.1 | 153       |
| 20 | Reviews and syntheses: Turning the challenges of partitioning ecosystem evaporation and transpiration into opportunities. Biogeosciences, 2019, 16, 3747-3775.                                              | 1.3 | 150       |
| 21 | Evapotranspiration partitioning in semiarid shrubland ecosystems: a twoâ€site evaluation of soil moisture control on transpiration. Ecohydrology, 2011, 4, 671-681.                                         | 1.1 | 145       |
| 22 | Using watershed water balance to evaluate the accuracy of eddy covariance evaporation<br>measurements for three semiarid ecosystems. Agricultural and Forest Meteorology, 2010, 150, 219-225.               | 1.9 | 144       |
| 23 | The carbon balance pivot point of southwestern U.S. semiarid ecosystems: Insights from the 21st century drought. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 2612-2624.                   | 1.3 | 142       |
| 24 | Terrestrial carbon balance in a drier world: the effects of water availability in southwestern North<br>America. Global Change Biology, 2016, 22, 1867-1879.                                                | 4.2 | 142       |
| 25 | Effect of remote sensing spatial resolution on interpreting tower-based flux observations. Remote Sensing of Environment, 2008, 112, 337-349.                                                               | 4.6 | 140       |
| 26 | The AmeriFlux network: A coalition of the willing. Agricultural and Forest Meteorology, 2018, 249, 444-456.                                                                                                 | 1.9 | 140       |
| 27 | Impacts of droughts and extreme-temperature events on gross primary production and ecosystem respiration: a systematic assessment across ecosystems and climate zones. Biogeosciences, 2018, 15, 1293-1318. | 1.3 | 137       |
| 28 | Global estimation of evapotranspiration using a leaf area index-based surface energy and water balance model. Remote Sensing of Environment, 2012, 124, 581-595.                                            | 4.6 | 136       |
| 29 | Observed relation between evapotranspiration and soil moisture in the North American monsoon region. Geophysical Research Letters, 2008, 35, .                                                              | 1.5 | 134       |
| 30 | Productivity, Respiration, and Light-Response Parameters of World Grassland and Agroecosystems<br>Derived From Flux-Tower Measurements. Rangeland Ecology and Management, 2010, 63, 16-39.                  | 1.1 | 133       |
| 31 | The ecohydrologic significance of hydraulic redistribution in a semiarid savanna. Water Resources<br>Research, 2008, 44, .                                                                                  | 1.7 | 132       |
| 32 | Representativeness of Eddy-Covariance flux footprints for areas surrounding AmeriFlux sites.<br>Agricultural and Forest Meteorology, 2021, 301-302, 108350.                                                 | 1.9 | 125       |
| 33 | Hydraulic redistribution by a dominant, warm-desert phreatophyte: seasonal patterns and response to precipitation pulses. Functional Ecology, 2004, 18, 530-538.                                            | 1.7 | 122       |
| 34 | Relationship between evapotranspiration and precipitation pulses in a semiarid rangeland estimated by moisture flux towers and MODIS vegetation indices. Journal of Arid Environments, 2007, 70, 443-462.   | 1.2 | 119       |
| 35 | The water use of two dominant vegetation communities in a semiarid riparian ecosystem. Agricultural and Forest Meteorology, 2000, 105, 241-256.                                                             | 1.9 | 115       |
| 36 | Energy exchange and evapotranspiration over two temperate semi-arid grasslands in North America.<br>Agricultural and Forest Meteorology, 2012, 153, 31-44.                                                  | 1.9 | 115       |

| #  | Article                                                                                                                                                                                                                        | lF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Whole ecosystem metabolic pulses following precipitation events. Functional Ecology, 2008, 22, 924-930.                                                                                                                        | 1.7  | 114       |
| 38 | Modeling multiyear observations of soil moisture recharge in the semiarid American Southwest.<br>Water Resources Research, 2000, 36, 2233-2247.                                                                                | 1.7  | 113       |
| 39 | Thermal optimality of net ecosystem exchange of carbon dioxide and underlying mechanisms. New<br>Phytologist, 2012, 194, 775-783.                                                                                              | 3.5  | 111       |
| 40 | Controls on transpiration in a semiarid riparian cottonwood forest. Agricultural and Forest<br>Meteorology, 2006, 137, 56-67.                                                                                                  | 1.9  | 110       |
| 41 | Chlorophyll Fluorescence Better Captures Seasonal and Interannual Gross Primary Productivity<br>Dynamics Across Dryland Ecosystems of Southwestern North America. Geophysical Research Letters,<br>2018, 45, 748-757.          | 1.5  | 109       |
| 42 | Partitioning evapotranspiration in semiarid grassland and shrubland ecosystems using time series of soil surface temperature. Agricultural and Forest Meteorology, 2009, 149, 59-72.                                           | 1.9  | 107       |
| 43 | Partitioning evapotranspiration using longâ€ŧerm carbon dioxide and water vapor fluxes. Geophysical<br>Research Letters, 2017, 44, 6833-6840.                                                                                  | 1.5  | 104       |
| 44 | Seasonal estimates of riparian evapotranspiration using remote and in situ measurements.<br>Agricultural and Forest Meteorology, 2000, 105, 281-309.                                                                           | 1.9  | 100       |
| 45 | Multiyear riparian evapotranspiration and groundwater use for a semiarid watershed. Journal of Arid<br>Environments, 2008, 72, 1232-1246.                                                                                      | 1.2  | 100       |
| 46 | The three major axes of terrestrial ecosystem function. Nature, 2021, 598, 468-472.                                                                                                                                            | 13.7 | 99        |
| 47 | Recent tree dieâ€off has little effect on streamflow in contrast to expected increases from historical studies. Water Resources Research, 2015, 51, 9775-9789.                                                                 | 1.7  | 97        |
| 48 | Ecosystem transpiration and evaporation: Insights from three water flux partitioning methods across FLUXNET sites. Global Change Biology, 2020, 26, 6916-6930.                                                                 | 4.2  | 97        |
| 49 | Calculating <scp><scp>CO<sub>2</sub></scp> and <scp><scp>H<sub>2</sub>O</scp> </scp> eddy covariance fluxes from an enclosed gas analyzer using an instantaneous mixing ratio. Global Change Biology, 2012, 18, 385-399.</scp> | 4.2  | 95        |
| 50 | Latitudinal patterns of magnitude and interannual variability in net ecosystem exchange regulated by biological and environmental variables. Global Change Biology, 2009, 15, 2905-2920.                                       | 4.2  | 94        |
| 51 | The relative controls of temperature, soil moisture, and plant functional group on soil<br>CO <sub>2</sub> efflux at diel, seasonal, and annual scales. Journal of Geophysical Research, 2011, 116, .                          | 3.3  | 94        |
| 52 | Evaluation of the VIIRS BRDF, Albedo and NBAR products suite and an assessment of continuity with the long term MODIS record. Remote Sensing of Environment, 2017, 201, 256-274.                                               | 4.6  | 89        |
| 53 | Comparing ecosystem and soil respiration: Review and key challenges of tower-based and soil measurements. Agricultural and Forest Meteorology, 2018, 249, 434-443.                                                             | 1.9  | 89        |
|    |                                                                                                                                                                                                                                |      |           |

| #  | Article                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | The understory and overstory partitioning of energy and water fluxes in an open canopy, semiarid woodland. Agricultural and Forest Meteorology, 2003, 114, 127-139.                                           | 1.9 | 80        |
| 56 | When vegetation change alters ecosystem water availability. Global Change Biology, 2014, 20, 2198-2210.                                                                                                       | 4.2 | 78        |
| 57 | Estimating Riparian and Agricultural Actual Evapotranspiration by Reference Evapotranspiration and MODIS Enhanced Vegetation Index. Remote Sensing, 2013, 5, 3849-3871.                                       | 1.8 | 76        |
| 58 | Invasion of shrublands by exotic grasses: ecohydrological consequences in cold versus warm deserts. Ecohydrology, 2012, 5, 160-173.                                                                           | 1.1 | 72        |
| 59 | The SMAP Level 4 Carbon Product for Monitoring Ecosystem Land–Atmosphere CO <sub>2</sub><br>Exchange. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55, 6517-6532.                                | 2.7 | 69        |
| 60 | An integrated modelling framework of catchmentâ€scale ecohydrological processes: 1. Model description and tests over an energyâ€imited watershed. Ecohydrology, 2014, 7, 427-439.                             | 1.1 | 68        |
| 61 | Comparison of methods to estimate ephemeral channel recharge, Walnut Gulch, San Pedro River<br>Basin, Arizona. Water Science and Application, 2004, , 77-99.                                                  | 0.3 | 66        |
| 62 | Temperature and precipitation controls over leaf―and ecosystemâ€level <scp>CO<sub>2</sub></scp><br>flux along a woody plant encroachment gradient. Global Change Biology, 2012, 18, 1389-1400.                | 4.2 | 65        |
| 63 | Changes in photosynthesis and soil moisture drive the seasonal soil respiration-temperature hysteresis relationship. Agricultural and Forest Meteorology, 2018, 259, 184-195.                                 | 1.9 | 65        |
| 64 | Intraseasonal Variation in Water and Carbon Dioxide Flux Components in a Semiarid Riparian<br>Woodland. Ecosystems, 2007, 10, 1100-1115.                                                                      | 1.6 | 63        |
| 65 | Land-surface controls on afternoon precipitation diagnosed from observational data: uncertainties and confounding factors. Atmospheric Chemistry and Physics, 2014, 14, 8343-8367.                            | 1.9 | 63        |
| 66 | Longâ€ŧerm runoff and sediment yields from small semiarid watersheds in southern Arizona. Water<br>Resources Research, 2010, 46, .                                                                            | 1.7 | 61        |
| 67 | Actual Evapotranspiration (Water Use) Assessment of the Colorado River Basin at the Landsat<br>Resolution Using the Operational Simplified Surface Energy Balance Model. Remote Sensing, 2014, 6,<br>233-256. | 1.8 | 61        |
| 68 | The water balance components of undisturbed tropical woodlands in the Brazilian cerrado.<br>Hydrology and Earth System Sciences, 2015, 19, 2899-2910.                                                         | 1.9 | 57        |
| 69 | Groundwater recharge decrease with increased vegetation density in the Brazilian cerrado.<br>Ecohydrology, 2017, 10, e1759.                                                                                   | 1.1 | 56        |
| 70 | Preface paper to the Semi-Arid Land-Surface-Atmosphere (SALSA) Program special issue. Agricultural and Forest Meteorology, 2000, 105, 3-20.                                                                   | 1.9 | 55        |
| 71 | Changes in Vegetation Condition and Surface Fluxes during NAME 2004. Journal of Climate, 2007, 20, 1810-1820.                                                                                                 | 1.2 | 55        |
| 72 | Biophysical controls on carbon and water vapor fluxes across a grassland climatic gradient in the<br>United States. Agricultural and Forest Meteorology, 2015, 214-215, 293-305.                              | 1.9 | 51        |

| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Impacts of hydraulic redistribution on grass–tree competition vs facilitation in a semiâ€arid savanna.<br>New Phytologist, 2017, 215, 1451-1461.                                                                           | 3.5 | 51        |
| 74 | Using observations and a distributed hydrologic model to explore runoff thresholds linked with mesquite encroachment in the Sonoran Desert. Water Resources Research, 2014, 50, 8191-8215.                                 | 1.7 | 50        |
| 75 | Precipitation legacy effects on dryland ecosystem carbon fluxes: direction, magnitude and biogeochemical carryovers. Biogeosciences, 2016, 13, 425-439.                                                                    | 1.3 | 50        |
| 76 | COSORE: A community database for continuous soil respiration and other soilâ€atmosphere greenhouse<br>gas flux data. Global Change Biology, 2020, 26, 7268-7283.                                                           | 4.2 | 50        |
| 77 | Shrubland carbon sink depends upon winter water availability in the warm deserts of North America.<br>Agricultural and Forest Meteorology, 2018, 249, 407-419.                                                             | 1.9 | 49        |
| 78 | Critical Zone Water Balance Over 13ÂYears in a Semiarid Savanna. Water Resources Research, 2019, 55,<br>574-588.                                                                                                           | 1.7 | 49        |
| 79 | Sensitivity of riparian ecosystems in arid and semiarid environments to moisture pulses. Hydrological<br>Processes, 2006, 20, 3191-3205.                                                                                   | 1.1 | 48        |
| 80 | Confronting the water potential information gap. Nature Geoscience, 2022, 15, 158-164.                                                                                                                                     | 5.4 | 47        |
| 81 | The potential of carbonyl sulfide as a proxy for gross primary production at flux tower sites. Journal of Geophysical Research, 2011, 116, .                                                                               | 3.3 | 46        |
| 82 | Exceptional heat and atmospheric dryness amplified losses of primary production during the 2020 U.S.<br>Southwest hot drought. Global Change Biology, 2022, 28, 4794-4806.                                                 | 4.2 | 46        |
| 83 | Estimating evapotranspiration under warmer climates: Insights from a semi-arid riparian system.<br>Journal of Hydrology, 2011, 399, 1-11.                                                                                  | 2.3 | 45        |
| 84 | Event to multidecadal persistence in rainfall and runoff in southeast Arizona. Water Resources<br>Research, 2008, 44, .                                                                                                    | 1.7 | 44        |
| 85 | Nocturnal soil CO <sub>2</sub> uptake and its relationship to subsurface soil and ecosystem carbon<br>fluxes in a Chihuahuan Desert shrubland. Journal of Geophysical Research G: Biogeosciences, 2013, 118,<br>1593-1603. | 1.3 | 44        |
| 86 | High-resolution characterization of a semiarid watershed: Implications on evapotranspiration estimates. Journal of Hydrology, 2014, 509, 306-319.                                                                          | 2.3 | 44        |
| 87 | Implementing Dynamic Root Optimization in Noahâ€MP for Simulating Phreatophytic Root Water Uptake.<br>Water Resources Research, 2018, 54, 1560-1575.                                                                       | 1.7 | 44        |
| 88 | Functional differences between summer and winter season rain assessed with MODIS-derived phenology in a semi-arid region. Journal of Vegetation Science, 2010, 21, 16-30.                                                  | 1.1 | 43        |
| 89 | On the theory relating changes in areaâ€average and pan evaporation. Quarterly Journal of the Royal<br>Meteorological Society, 2009, 135, 1230-1247                                                                        | 1.0 | 42        |
| 90 | Vegetation productivity responds to subâ€annual climate conditions across semiarid biomes. Ecosphere, 2016, 7, e01339.                                                                                                     | 1.0 | 42        |

| #   | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | SENSITIVITY OF MESQUITE SHRUBLAND CO <sub>2</sub> EXCHANGE TO PRECIPITATION IN CONTRASTING LANDSCAPE SETTINGS. Ecology, 2008, 89, 2900-2910.                                                                       | 1.5 | 41        |
| 92  | Quantifying the timescales over which exogenous and endogenous conditions affect soil respiration.<br>New Phytologist, 2014, 202, 442-454.                                                                         | 3.5 | 40        |
| 93  | Water Availability Impacts on Evapotranspiration Partitioning. Agricultural and Forest Meteorology, 2021, 297, 108251.                                                                                             | 1.9 | 39        |
| 94  | Timescales of Land Surface Evapotranspiration Response. Journal of Climate, 1997, 10, 559-566.                                                                                                                     | 1.2 | 38        |
| 95  | Preface to special section on Fifty Years of Research and Data Collection: U.S. Department of Agriculture Walnut Gulch Experimental Watershed. Water Resources Research, 2008, 44, .                               | 1.7 | 38        |
| 96  | How do variations in the temporal distribution of rainfall events affect ecosystem fluxes in<br>seasonally water-limited Northern Hemisphere shrublands and forests?. Biogeosciences, 2012, 9,<br>1007-1024.       | 1.3 | 38        |
| 97  | The sensitivity of ecosystem carbon exchange to seasonal precipitation and woody plant encroachment. Oecologia, 2006, 150, 453-463.                                                                                | 0.9 | 37        |
| 98  | Antecedent Conditions Influence Soil Respiration Differences in Shrub and Grass Patches. Ecosystems, 2013, 16, 1230-1247.                                                                                          | 1.6 | 37        |
| 99  | Estimation of area-average sensible heat flux using a large-aperture scintillometer during the<br>Semi-Arid Land-Surface-Atmosphere (SALSA) Experiment. Water Resources Research, 1999, 35, 2505-2511.             | 1.7 | 36        |
| 100 | Robust estimates of soil moisture and latent heat flux coupling strength obtained from triple collocation. Geophysical Research Letters, 2015, 42, 8415-8423.                                                      | 1.5 | 36        |
| 101 | Endogenous circadian regulation of carbon dioxide exchange in terrestrial ecosystems. Clobal<br>Change Biology, 2012, 18, 1956-1970.                                                                               | 4.2 | 35        |
| 102 | Synergistic use of SMAP and OCO-2 data in assessing the responses of ecosystem productivity to the 2018 U.S. drought. Remote Sensing of Environment, 2020, 251, 112062.                                            | 4.6 | 34        |
| 103 | Longâ€ŧerm decrease in satellite vegetation indices in response to environmental variables in an iconic<br>desert riparian ecosystem: the Upper San Pedro, Arizona, United States. Ecohydrology, 2015, 8, 610-625. | 1.1 | 33        |
| 104 | Carbon dioxide and water vapour exchange in a tropical dry forest as influenced by the North<br>American Monsoon System (NAMS). Journal of Arid Environments, 2010, 74, 556-563.                                   | 1.2 | 32        |
| 105 | Understanding ecohydrological connectivity in savannas: a system dynamics modelling approach.<br>Ecohydrology, 2012, 5, 200-220.                                                                                   | 1.1 | 31        |
| 106 | Integrating continuous atmospheric boundary layer and tower-based flux measurements to advance<br>understanding of land-atmosphere interactions. Agricultural and Forest Meteorology, 2021, 307,<br>108509.        | 1.9 | 31        |
| 107 | Woody plants modulate the temporal dynamics of soil moisture in a semiâ€arid mesquite savanna.<br>Ecohydrology, 2010, 3, 20-27.                                                                                    | 1.1 | 30        |
| 108 | Thermal adaptation of net ecosystem exchange. Biogeosciences, 2011, 8, 1453-1463.                                                                                                                                  | 1.3 | 30        |

| #   | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Combined measurement and modeling of the hydrological impact of hydraulic redistribution using CLM4.5 at eight AmeriFlux sites. Hydrology and Earth System Sciences, 2016, 20, 2001-2018.                                         | 1.9 | 29        |
| 110 | Evaluating Soil Resistance Formulations in Thermalâ€Based Twoâ€Source Energy Balance (TSEB) Model:<br>Implications for Heterogeneous Semiarid and Arid Regions. Water Resources Research, 2019, 55,<br>1059-1078.                 | 1.7 | 29        |
| 111 | Shrub encroachment alters sensitivity of soil respiration to temperature and moisture. Journal of<br>Geophysical Research, 2012, 117, .                                                                                           | 3.3 | 28        |
| 112 | High Vapor Pressure Deficit Decreases the Productivity and Water Use Efficiency of Rainâ€Induced<br>Pulses in Semiarid Ecosystems. Journal of Geophysical Research G: Biogeosciences, 2020, 125,<br>e2020JG005665.                | 1.3 | 28        |
| 113 | Effect of a Canopy Interception Reservoir on Hydrological Persistence in a General Circulation<br>Model. Journal of Climate, 1995, 8, 1917-1922.                                                                                  | 1.2 | 27        |
| 114 | Growing season ecosystem and leaf-level gas exchange of an exotic and native semiarid bunchgrass.<br>Oecologia, 2010, 163, 561-570.                                                                                               | 0.9 | 26        |
| 115 | Quantification of terrestrial ecosystem carbon dynamics in the conterminous United States<br>combining a process-based biogeochemical model and MODIS and AmeriFlux data. Biogeosciences, 2011,<br>8, 2665-2688.                  | 1.3 | 26        |
| 116 | Coupling diffusion and maximum entropy models to estimate thermal inertia. Remote Sensing of Environment, 2012, 119, 222-231.                                                                                                     | 4.6 | 26        |
| 117 | Intensification of the North American Monsoon Rainfall as Observed From a Longâ€Term Highâ€Density<br>Gauge Network. Geophysical Research Letters, 2019, 46, 6839-6847.                                                           | 1.5 | 26        |
| 118 | Satellite solar-induced chlorophyll fluorescence and near-infrared reflectance capture<br>complementary aspects of dryland vegetation productivity dynamics. Remote Sensing of Environment,<br>2022, 270, 112858.                 | 4.6 | 26        |
| 119 | Improving the accuracy of the gradient method for determining soil carbon dioxide efflux. Journal of<br>Geophysical Research G: Biogeosciences, 2017, 122, 50-64.                                                                 | 1.3 | 25        |
| 120 | Soil evaporation response to Lehmann lovegrass (Eragrostis lehmanniana) invasion in a semiarid watershed. Agricultural and Forest Meteorology, 2009, 149, 2133-2142.                                                              | 1.9 | 24        |
| 121 | Gross primary production variability associated with meteorology, physiology, leaf area, and water<br>supply in contrasting woodland and grassland semiarid riparian ecosystems. Journal of Geophysical<br>Research, 2009, 114, . | 3.3 | 24        |
| 122 | Impact of Hydraulic Redistribution on Multispecies Vegetation Water Use in a Semiarid Savanna<br>Ecosystem: An Experimental and Modeling Synthesis. Water Resources Research, 2018, 54, 4009-4027.                                | 1.7 | 24        |
| 123 | Downscaling SMAP and SMOS soil moisture with moderate-resolution imaging spectroradiometer visible and infrared products over southern Arizona. Journal of Applied Remote Sensing, 2017, 11, 026021.                              | 0.6 | 24        |
| 124 | Dynamic global vegetation models underestimate net CO <sub>2</sub> flux mean and inter-annual variability in dryland ecosystems. Environmental Research Letters, 2021, 16, 094023.                                                | 2.2 | 23        |
| 125 | Subterranean ventilation of allochthonous CO 2 governs net CO 2 exchange in a semiarid<br>Mediterranean grassland. Agricultural and Forest Meteorology, 2017, 234-235, 115-126.                                                   | 1.9 | 22        |
| 126 | Montane forest productivity across a semiarid climatic gradient. Global Change Biology, 2020, 26, 6945-6958.                                                                                                                      | 4.2 | 22        |

| #   | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Landscape and environmental controls over leaf and ecosystem carbon dioxide fluxes under woody plant expansion. Journal of Ecology, 2013, 101, 1471-1483.                                                              | 1.9 | 21        |
| 128 | Environmental and Vegetative Controls on Soil CO2 Efflux in Three Semiarid Ecosystems. Soil Systems, 2019, 3, 6.                                                                                                       | 1.0 | 21        |
| 129 | Runoff and erosional responses to a droughtâ€induced shift in a desert grassland community<br>composition. Journal of Geophysical Research, 2010, 115, .                                                               | 3.3 | 20        |
| 130 | Comparative rates of wind versus water erosion from a small semiarid watershed in southern<br>Arizona, USA. Aeolian Research, 2011, 3, 197-204.                                                                        | 1.1 | 20        |
| 131 | Multiple year effects of a biological control agent (Diorhabda carinulata) on Tamarix (saltcedar)<br>ecosystem exchanges of carbon dioxide and water. Agricultural and Forest Meteorology, 2012, 164,<br>161-169.      | 1.9 | 20        |
| 132 | Soil moisture and ecosystem function responses of desert grassland varying in vegetative cover to a saturating precipitation pulse. Ecohydrology, 2012, 5, 297-305.                                                    | 1.1 | 20        |
| 133 | Modeling evapotranspiration and its partitioning over a semiarid shrub ecosystem from satellite imagery: a multiple validation. Journal of Applied Remote Sensing, 2013, 7, 073495.                                    | 0.6 | 20        |
| 134 | An integrated modelling framework of catchmentâ€scale ecohydrological processes: 2. The role of<br>water subsidy by overland flow on vegetation dynamics in a semiâ€arid catchment. Ecohydrology, 2014,<br>7, 815-827. | 1.1 | 20        |
| 135 | Evapotranspiration Estimates Derived Using Multi-Platform Remote Sensing in a Semiarid Region.<br>Remote Sensing, 2017, 9, 184.                                                                                        | 1.8 | 20        |
| 136 | Consequences of Cool-Season Drought-Induced Plant Mortality to Chihuahuan Desert Grassland<br>Ecosystem and Soil Respiration Dynamics. Ecosystems, 2013, 16, 1178-1191.                                                | 1.6 | 19        |
| 137 | Wide-area ratios of evapotranspiration to precipitation in monsoon-dependent semiarid vegetation communities. Journal of Arid Environments, 2015, 117, 84-95.                                                          | 1.2 | 19        |
| 138 | Commonalities of carbon dioxide exchange in semiarid regions with monsoon and Mediterranean climates. Journal of Arid Environments, 2012, 84, 71-79.                                                                   | 1.2 | 18        |
| 139 | Evaluating the effect of rainfall variability on vegetation establishment in a semidesert grassland.<br>Environmental Monitoring and Assessment, 2014, 186, 395-406.                                                   | 1.3 | 17        |
| 140 | Hydraulic redistribution affects modeled carbon cycling via soil microbial activity and suppressed fire. Global Change Biology, 2018, 24, 3472-3485.                                                                   | 4.2 | 17        |
| 141 | Ecosystem carbon and water cycling from a sky island montane forest. Agricultural and Forest<br>Meteorology, 2020, 281, 107835.                                                                                        | 1.9 | 17        |
| 142 | Monitoring agroecosystem productivity and phenology at a national scale: A metric assessment framework. Ecological Indicators, 2021, 131, 108147.                                                                      | 2.6 | 16        |
| 143 | Testing water fluxes and storage from two hydrology configurations within the ORCHIDEE land surface model across US semi-arid sites. Hydrology and Earth System Sciences, 2020, 24, 5203-5230.                         | 1.9 | 16        |
| 144 | Improved dryland carbon flux predictions with explicit consideration of water-carbon coupling.<br>Communications Earth & Environment, 2021, 2, .                                                                       | 2.6 | 16        |

| #   | Article                                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Inter- and under-canopy soil water, leaf-level and whole-plant gas exchange dynamics of a semi-arid perennial C4 grass. Oecologia, 2011, 165, 17-29.                                                                                                 | 0.9 | 15        |
| 146 | Spatio-temporal variations in surface characteristics over the North American Monsoon region.<br>Journal of Arid Environments, 2010, 74, 540-548.                                                                                                    | 1.2 | 14        |
| 147 | Seasonality in aerodynamic resistance across a range of North American ecosystems. Agricultural and Forest Meteorology, 2021, 310, 108613.                                                                                                           | 1.9 | 14        |
| 148 | A remote sensing approach for estimating distributed daily net carbon dioxide flux in semiarid grasslands. Water Resources Research, 2008, 44, .                                                                                                     | 1.7 | 13        |
| 149 | The Photochemical Reflectance Index (PRI) Captures the Ecohydrologic Sensitivity of a Semiarid Mixed<br>Conifer Forest. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005624.                                                 | 1.3 | 11        |
| 150 | Assessment and Validation of AirMOSS P-Band Root-Zone Soil Moisture Products. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58, 6181-6196.                                                                                               | 2.7 | 11        |
| 151 | Hydrologic response to precipitation pulses under and between shrubs in the Chihuahuan Desert,<br>Arizona. Water Resources Research, 2010, 46, .                                                                                                     | 1.7 | 10        |
| 152 | Cool-season whole-plant gas exchange of exotic and native semiarid bunchgrasses. Plant Ecology, 2012, 213, 1229-1239.                                                                                                                                | 0.7 | 10        |
| 153 | Longâ€ŧerm research catchments to investigate shrub encroachment in the Sonoran and Chihuahuan<br>deserts: Santa Rita and Jornada experimental ranges. Hydrological Processes, 2021, 35, e14031.                                                     | 1.1 | 10        |
| 154 | Canopy Temperature Is Regulated by Ecosystem Structural Traits and Captures the Ecohydrologic<br>Dynamics of a Semiarid Mixed Conifer Forest Site. Journal of Geophysical Research G: Biogeosciences,<br>2022, 127, .                                | 1.3 | 10        |
| 155 | Streamflow Response to Wildfire Differs With Season and Elevation in Adjacent Headwaters of the<br>Lower Colorado River Basin. Water Resources Research, 2022, 58, .                                                                                 | 1.7 | 10        |
| 156 | Convergent Hydraulic Redistribution and Groundwater Access Supported Facilitative Dependency<br>Between Trees and Grasses in a Semiâ€Arid Environment. Water Resources Research, 2021, 57,<br>e2020WR028103.                                         | 1.7 | 9         |
| 157 | Insights for empirically modeling evapotranspiration influenced by riparian and upland vegetation in semiarid regions. Journal of Arid Environments, 2014, 111, 42-52.                                                                               | 1.2 | 8         |
| 158 | Optimizing Carbon Cycle Parameters Drastically Improves Terrestrial Biosphere Model Underestimates<br>of Dryland Mean Net CO <sub>2</sub> Flux and its Interâ€Annual Variability. Journal of Geophysical<br>Research G: Biogeosciences, 2021, 126, . | 1.3 | 8         |
| 159 | Hydraulic redistribution buffers climate variability and regulates grassâ€tree interactions in a semiarid<br>riparian savanna. Ecohydrology, 2021, 14, e2271.                                                                                        | 1.1 | 7         |
| 160 | A Microbialâ€Explicit Soil Organic Carbon Decomposition Model (MESDM): Development and Testing at a<br>Semiarid Grassland Site. Journal of Advances in Modeling Earth Systems, 2022, 14, e2021MS002485.                                              | 1.3 | 7         |
| 161 | Water use efficiency of annualâ€dominated and bunchgrassâ€dominated savanna intercanopy space.<br>Ecohydrology, 2014, 7, 1208-1215.                                                                                                                  | 1.1 | 6         |
| 162 | Longer term effects of biological control on tamarisk evapotranspiration and carbon dioxide exchange. Hydrological Processes, 2020, 34, 223-236.                                                                                                     | 1.1 | 4         |

| #   | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Site Characteristics Mediate the Relationship Between Forest Productivity and Satellite Measured<br>Solar Induced Fluorescence. Frontiers in Forests and Global Change, 2021, 4, .                                                                 | 1.0 | 4         |
| 164 | Disentangling the Relative Drivers of Seasonal Evapotranspiration Across a Continentalâ€Scale Aridity<br>Gradient. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .                                                                 | 1.3 | 4         |
| 165 | Ecosystem hydrologic and metabolic flashiness are shaped by plant community traits and precipitation. Agricultural and Forest Meteorology, 2019, 279, 107674.                                                                                      | 1.9 | 3         |
| 166 | A micrometeorological flux perspective on brush management in a shrub-encroached Sonoran Desert<br>grassland. Agricultural and Forest Meteorology, 2022, 313, 108763.                                                                              | 1.9 | 3         |
| 167 | Evaluating the Met Office Unified Model land surface temperature in Global Atmosphere/Land 3.1<br>(GA/L3.1), Global Atmosphere/Land 6.1 (GA/L6.1) and limited area 2.2 km configurations. Geoscientific<br>Model Development, 2019, 12, 1703-1724. | 1.3 | 2         |
| 168 | The USDAâ€Agricultural Research Service's long term agroâ€ecosystems Walnut Gulch Experimental<br>Watershed, Arizona, USA. Hydrological Processes, 2021, 35, e14349.                                                                               | 1.1 | 1         |