Ofer Sarig

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8611176/publications.pdf

Version: 2024-02-01

	257357	276775
1,965	24	41
citations	h-index	g-index
76	76	2004
76	76	2984
docs citations	times ranked	citing authors
	1,965 citations 76 docs citations	1,965 24 citations h-index 76 76

#	Article	IF	CITATIONS
1	Vorinostat, a histone deacetylase inhibitor, as a potential novel treatment for psoriasis. Experimental Dermatology, 2022, 31, 567-576.	1.4	7
2	Neonatal inflammatory skin and bowel disease type 1 caused by a complex genetic defect and responsive to combined antiâ€tumour necrosis factorâ€Î± and interleukinâ€12/23 blockade. British Journal of Dermatology, 2022, 186, 1026-1029.	1.4	4
3	Loss-of-function variants in KLF4 underlie autosomal dominant palmoplantar keratoderma. Genetics in Medicine, 2022, 24, 1085-1095.	1.1	3
4	Up-regulation of ST18 in pemphigus vulgaris drives a self-amplifying p53-dependent pathomechanism resulting in decreased desmoglein 3 expression. Scientific Reports, 2022, 12, 5958.	1.6	1
5	Acute Respiratory Distress Syndrome in a Carrier of an Interleukin-36 Receptor Antagonist Mutation With Generalized Pustular Psoriasis. Journal of Psoriasis and Psoriatic Arthritis, 2022, 7, 9-12.	0.3	O
6	Coexistence of pachyonychia congenita and hidradenitis suppurativa: more than a coincidence. British Journal of Dermatology, 2022, 187, 392-400.	1.4	7
7	Heterozygous variants in the integrin subunit beta 4 gene (ITGB4) cause autosomal dominant nail dystrophy. British Journal of Dermatology, 2022, 187, 826-828.	1.4	1
8	A unique skin phenotype resulting from a large heterozygous deletion spanning six keratin genes. British Journal of Dermatology, 2022, 187, 773-777.	1.4	2
9	Palmoplantar keratoderma caused by a missense variant in <i>CTSB</i> encoding cathepsin B. Clinical and Experimental Dermatology, 2021, 46, 103-108.	0.6	5
10	Molecular epidemiology of pachyonychia congenita in the Israeli population. Clinical and Experimental Dermatology, 2021, 46, 663-668.	0.6	1
11	ST18 affects cell–cell adhesion in pemphigus vulgaris in a tumour necrosis factorâ€Î±â€dependent fashion*. British Journal of Dermatology, 2021, 184, 1153-1160.	1.4	7
12	Epidermolysis bullosa simplex due to biâ€ellelic <i>DST</i> mutations: Case series and review of the literature. Pediatric Dermatology, 2021, 38, 436-441.	0.5	9
13	Atypical presentation of laryngoâ€onychoâ€outaneous syndrome resulting from novel mutations in LAMA3A. Clinical and Experimental Dermatology, 2021, 46, 990-992.	0.6	O
14	Epidermolytic epidermal nevus caused by a somatic mutation in KRT2. Pediatric Dermatology, 2021, 38, 538-540.	0.5	1
15	Identification of clinically useful predictive genetic variants in pachyonychia congenita. Clinical and Experimental Dermatology, 2021, 46, 867-873.	0.6	5
16	Molecular epidemiology of nonâ€syndromic autosomal recessive congenital ichthyosis in a Middleâ€Eastern population. Experimental Dermatology, 2021, 30, 1290-1297.	1.4	10
17	Evidence for cutaneous dysbiosis in dystrophic epidermolysis bullosa. Clinical and Experimental Dermatology, 2021, 46, 1223-1229.	0.6	10
18	The Role of Desmoglein 1 in Gap Junction Turnover Revealed through the Study of SAMÂSyndrome. Journal of Investigative Dermatology, 2020, 140, 556-567.e9.	0.3	17

#	Article	IF	CITATIONS
19	Coagulation Factor XIII-A Subunit Missense Mutation in the Pathobiology of Autosomal Dominant Multiple Dermatofibromas. Journal of Investigative Dermatology, 2020, 140, 624-635.e7.	0.3	12
20	Treatment of epidermolysis bullosa pruriginosaâ€associated pruritus with dupilumab. British Journal of Dermatology, 2020, 182, 1495-1497.	1.4	41
21	Treatment of hereditary hypotrichosis simplex of the scalp with topical gentamicin. British Journal of Dermatology, 2020, 183, 114-120.	1.4	19
22	Phenotypic suppression of acral peeling skin syndrome in a patient with autosomal recessive congenital ichthyosis. Experimental Dermatology, 2020, 29, 742-748.	1.4	2
23	Loss-of-function variants in C3ORF52 result in localized autosomal recessive hypotrichosis. Genetics in Medicine, 2020, 22, 1227-1234.	1.1	12
24	Loss-of-Function Variants in SERPINA12 Underlie Autosomal Recessive Palmoplantar Keratoderma. Journal of Investigative Dermatology, 2020, 140, 2178-2187.	0.3	14
25	Identification of a founder mutation in <i> <scp>KRT</scp> 14 </i> associated with Naegeli–Franceschetti–Jadassohn syndrome. British Journal of Dermatology, 2020, 183, 756-757.	1.4	2
26	PLACK syndrome shows remarkable phenotypic homogeneity. Clinical and Experimental Dermatology, 2019, 44, 580-583.	0.6	8
27	ST18 Enhances PV-lgG-Induced Loss of Keratinocyte Cohesion in Parallel to Increased ERK Activation. Frontiers in Immunology, 2019, 10, 770.	2.2	20
28	Glutathione Sâ€transferase polymorphisms in patients with photosensitive and nonâ€photosensitive drug eruptions. Photodermatology Photoimmunology and Photomedicine, 2019, 35, 214-220.	0.7	4
29	Variant <i>PADI3</i> in Central Centrifugal Cicatricial Alopecia. New England Journal of Medicine, 2019, 380, 833-841.	13.9	102
30	Loss-of-function mutations in caspase recruitment domain-containing protein 14 (CARD14) are associated with a severe variant of atopic dermatitis. Journal of Allergy and Clinical Immunology, 2019, 143, 173-181.e10.	1.5	60
31	Punctate palmoplantar keratoderma: an unusual mutation causing an unusual phenotype. British Journal of Dermatology, 2018, 178, 1455-1457.	1.4	5
32	SAM syndrome is characterized by extensive phenotypic heterogeneity. Experimental Dermatology, 2018, 27, 787-790.	1.4	22
33	Striate palmoplantar keratoderma resulting from a missense mutation in <i>DSG1</i> . British Journal of Dermatology, 2018, 179, 755-757.	1.4	8
34	Novel POFUT 1 mutation associated with hidradenitis suppurativa–Dowling–Degos disease firm up a role for Notch signalling in the pathogenesis of this disorder: reply from the authors. British Journal of Dermatology, 2018, 178, 986-986.	1.4	3
35	Recessive epidermolytic ichthyosis results from loss of keratin 10 expression, regardless of the mutation location. Clinical and Experimental Dermatology, 2018, 43, 187-190.	0.6	10
36	Immuneâ€regulatory genes as possible modifiers of familial pityriasis rubra pilaris – lessons from a family with ⟨scp⟩ PRP⟨/scp⟩ and psoriasis. Journal of the European Academy of Dermatology and Venereology, 2018, 32, e389-e392.	1.3	6

#	Article	IF	Citations
37	A phenotype combining hidradenitis suppurativa with Dowling-Degos disease caused by a founder mutation in <i>PSENEN</i> . British Journal of Dermatology, 2018, 178, 502-508.	1.4	48
38	The Genetics of Pemphigus Vulgaris. Frontiers in Medicine, 2018, 5, 226.	1.2	60
39	Filaggrin 2 Deficiency Results in Abnormal Cell-Cell Adhesion in the Cornified Cell Layers and Causes Peeling Skin Syndrome Type A. Journal of Investigative Dermatology, 2018, 138, 1736-1743.	0.3	37
40	Identification of a recurrent mutation in <i>ATP2C1</i> demonstrates that papular acantholytic dyskeratosis and Hailey-Hailey disease are allelic disorders. British Journal of Dermatology, 2018, 179, 1001-1002.	1.4	11
41	The Molecular Revolution in Cutaneous Biology: EraÂof Next-Generation Sequencing. Journal of Investigative Dermatology, 2017, 137, e79-e82.	0.3	16
42	ARCI7 Revisited and Repositioned. Journal of Investigative Dermatology, 2017, 137, 970-972.	0.3	6
43	Calpain 12 Function Revealed through the Study of an Atypical Case of Autosomal Recessive Congenital Ichthyosis. Journal of Investigative Dermatology, 2017, 137, 385-393.	0.3	19
44	<scp>SVEP</scp> 1 plays a crucial role in epidermal differentiation. Experimental Dermatology, 2017, 26, 423-430.	1.4	17
45	Segmental basal cell naevus syndrome caused by an activating mutation in <i>smoothened</i> . British Journal of Dermatology, 2016, 175, 178-181.	1.4	33
46	Loss-of-Function Mutations in SERPINB8 Linked to Exfoliative Ichthyosis with Impaired Mechanical Stability of Intercellular Adhesions. American Journal of Human Genetics, 2016, 99, 430-436.	2.6	27
47	Nonâ€keratinocyte <scp>SNAP</scp> 29 influences epidermal differentiation and hair follicle formation in mice. Experimental Dermatology, 2016, 25, 647-649.	1.4	8
48	A novel homozygous deletion in <i>EXPH5</i> causes a skin fragility phenotype. Clinical and Experimental Dermatology, 2016, 41, 915-918.	0.6	7
49	Stabilizing mutations of KLHL24 ubiquitin ligase cause loss of keratin 14 and human skin fragility. Nature Genetics, 2016, 48, 1508-1516.	9.4	101
50	Somatic Mosaicism for a "Lethal― <i>><scp>GJB</scp>2</i> Mutation Results in a Patterned Form of Spiny Hyperkeratosis without Eccrine Involvement. Pediatric Dermatology, 2016, 33, 322-326.	0.5	5
51	Papillon–LefÔvre syndrome: report of six patients and identification of a novel mutation. International Journal of Dermatology, 2016, 55, 898-902.	0.5	11
52	Establishment of Two Mouse Models for CEDNIK Syndrome Reveals the Pivotal Role of SNAP29 in Epidermal Differentiation. Journal of Investigative Dermatology, 2016, 136, 672-679.	0.3	31
53	Identification of a Functional Risk Variant for Pemphigus Vulgaris in the ST18 Gene. PLoS Genetics, 2016, 12, e1006008.	1.5	53
54	Mutations in TSPEAR, Encoding a Regulator of Notch Signaling, Affect Tooth and Hair Follicle Morphogenesis. PLoS Genetics, 2016, 12, e1006369.	1.5	32

#	Article	IF	CITATIONS
55	Guanine polynucleotides are selfâ€antigens for human natural autoantibodies and are significantly reduced in the human genome. Immunology, 2015, 146, 401-410.	2.0	2
56	Autosomalâ€dominant cutis laxa resulting from an intronic mutation in <i><scp>ELN</scp></i> . Experimental Dermatology, 2015, 24, 885-887.	1.4	4
57	Extensive lentigo simplex, linear epidermolytic naevus and epidermolytic naevus comedonicus caused by a somatic mutation in <i>KRT10 < /i>). British Journal of Dermatology, 2015, 173, 293-296.</i>	1.4	9
58	Severe dermatitis, multiple allergies, and metabolic wasting syndrome caused by a novel mutation in the N-terminal plakin domain of desmoplakin. Journal of Allergy and Clinical Immunology, 2015, 136, 1268-1276.	1.5	103
59	Pyoderma gangrenosum, acne and ulcerative colitis in a patient with a novel mutation in the <i>PSTPIP1 </i> gene. Clinical and Experimental Dermatology, 2015, 40, 367-372.	0.6	53
60	Analysis of CARD14 Polymorphisms in Pityriasis Rubra Pilaris: Activation of NF-lºB. Journal of Investigative Dermatology, 2015, 135, 1905-1908.	0.3	24
61	A case for diagnosis. Clinical and Experimental Dermatology, 2015, 40, 697-699.	0.6	1
62	<scp>RBM</scp> 28, a protein deficient in <scp>ANE</scp> syndrome, regulates hair follicle growth via miRâ€203 and p63. Experimental Dermatology, 2015, 24, 618-622.	1.4	17
63	A Mutation in TP63 Causing a Mild Ectodermal Dysplasia Phenotype. Journal of Investigative Dermatology, 2014, 134, 2277-2280.	0.3	5
64	Olmsted Syndrome Caused by a Homozygous Recessive Mutation in TRPV3. Journal of Investigative Dermatology, 2014, 134, 1752-1754.	0.3	44
65	Autosomal dominant inheritance of central centrifugalÂcicatricial alopecia in black South Africans. Journal of the American Academy of Dermatology, 2014, 70, 679-682.e1.	0.6	54
66	Molecular Analysis of a Series of Israeli Families with ComÃ"l-Netherton Syndrome. Dermatology, 2014, 228, 183-188.	0.9	12
67	Semidominant Inheritance in Epidermolytic Ichthyosis. Journal of Investigative Dermatology, 2013, 133, 2626-2628.	0.3	10
68	Non-syndromic autosomal recessive congenital ichthyosis in the Israeli population. Clinical and Experimental Dermatology, 2013, 38, 911-916.	0.6	34
69	Infantile mitochondrial hepatopathy is a cardinal feature of MEGDEL syndrome (3â€Methylglutaconic) Tj ETQq1 1 mutations in ⟨i⟩SERAC1⟨/i⟩. American Journal of Medical Genetics, Part A, 2013, 161, 2204-2215.	0.784314 0.7	4 rgBT /Over 39
70	Desmoglein 1 deficiency results in severe dermatitis, multiple allergies and metabolic wasting. Nature Genetics, 2013, 45, 1244-1248.	9.4	289
71	Population-Specific Association between a Polymorphic Variant in ST18, Encoding a Pro-Apoptotic Molecule, and Pemphigus Vulgaris. Journal of Investigative Dermatology, 2012, 132, 1798-1805.	0.3	98
72	Short Stature, Onychodysplasia, Facial Dysmorphism, and Hypotrichosis Syndrome Is Caused by a POC1A Mutation. American Journal of Human Genetics, 2012, 91, 337-342.	2.6	59

OFER SARIG

#	Article	IF	CITATION
73	CEDNIK syndrome results from loss-of-function mutations in SNAP29. British Journal of Dermatology, 2011, 164, no-no.	1.4	69
74	A Mutation in LIPN, Encoding Epidermal Lipase N, Causes a Late-Onset Form of Autosomal-Recessive Congenital Ichthyosis. American Journal of Human Genetics, 2011, 88, 482-487.	2.6	62
75	IGFBP7 as a Potential Therapeutic Target in Psoriasis. Journal of Investigative Dermatology, 2011, 131, 1767-1770.	0.3	14