
Ki-Jun Yoon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8610275/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Setting the clock of neural progenitor cells during mammalian corticogenesis. Seminars in Cell and Developmental Biology, 2023, 142, 43-53.	5.0	6
2	CYFIP1 Dosages Exhibit Divergent Behavioral Impact via Diametric Regulation of NMDA Receptor Complex Translation in Mouse Models of Psychiatric Disorders. Biological Psychiatry, 2022, 92, 815-826.	1.3	8
3	Partitioning RNAs by length improves transcriptome reconstruction from short-read RNA-seq data. Nature Biotechnology, 2022, 40, 741-750.	17.5	7
4	Engineering Brain Organoids: Toward Mature Neural Circuitry with an Intact Cytoarchitecture. International Journal of Stem Cells, 2022, 15, 41-59.	1.8	11
5	CRISPR/Cas9 technologies to manipulate human induced pluripotent stem cells. , 2021, , 249-287.		0
6	An Integrated Systems Biology Approach Identifies the Proteasome as A Critical Host Machinery for ZIKV and DENV Replication. Genomics, Proteomics and Bioinformatics, 2021, 19, 108-122.	6.9	7
7	Pharmacological rescue in patient iPSC and mouse models with a rare DISC1 mutation. Nature Communications, 2021, 12, 1398.	12.8	17
8	Neur1 and Neur2 are required for hippocampusâ€dependent spatial memory and synaptic plasticity. Hippocampus, 2020, 30, 1158-1166.	1.9	3
9	Persistent Cyfip1 Expression Is Required to Maintain the Adult Subventricular Zone Neurogenic Niche. Journal of Neuroscience, 2020, 40, 2015-2024.	3.6	6
10	LSM12-EPAC1 defines a neuroprotective pathway that sustains the nucleocytoplasmic RAN gradient. PLoS Biology, 2020, 18, e3001002.	5.6	12
11	Epitranscriptomic regulation of transcriptome plasticity in development and diseases of the brain. BMB Reports, 2020, 53, 551-564.	2.4	7
12	LSM12-EPAC1 defines a neuroprotective pathway that sustains the nucleocytoplasmic RAN gradient. , 2020, 18, e3001002.		0
13	LSM12-EPAC1 defines a neuroprotective pathway that sustains the nucleocytoplasmic RAN gradient. , 2020, 18, e3001002.		0
14	LSM12-EPAC1 defines a neuroprotective pathway that sustains the nucleocytoplasmic RAN gradient. , 2020, 18, e3001002.		0
15	LSM12-EPAC1 defines a neuroprotective pathway that sustains the nucleocytoplasmic RAN gradient. , 2020, 18, e3001002.		0
16	LSM12-EPAC1 defines a neuroprotective pathway that sustains the nucleocytoplasmic RAN gradient. , 2020, 18, e3001002.		0
17	LSM12-EPAC1 defines a neuroprotective pathway that sustains the nucleocytoplasmic RAN gradient. , 2020, 18, e3001002.		0
18	LSM12-EPAC1 defines a neuroprotective pathway that sustains the nucleocytoplasmic RAN gradient. ,		0

2020, 18, e3001002.

Ki-Jun Yoon

#	Article	IF	CITATIONS
19	LSM12-EPAC1 defines a neuroprotective pathway that sustains the nucleocytoplasmic RAN gradient. , 2020, 18, e3001002.		0
20	Modeling Host-Virus Interactions in Viral Infectious Diseases Using Stem-Cell-Derived Systems and CRISPR/Cas9 Technology. Viruses, 2019, 11, 124.	3.3	19
21	Past, Present, and Future of Brain Organoid Technology. Molecules and Cells, 2019, 42, 617-627.	2.6	63
22	Epigenetics and epitranscriptomics in temporal patterning of cortical neural progenitor competence. Journal of Cell Biology, 2018, 217, 1901-1914.	5.2	69
23	Coupling Neurogenesis to Circuit Formation. Cell, 2018, 173, 288-290.	28.9	1
24	Multiplexed Biomarker Panels Discriminate Zika and Dengue Virus Infection in Humans. Molecular and Cellular Proteomics, 2018, 17, 349-356.	3.8	19
25	Autocrine Mfge8 Signaling Prevents Developmental Exhaustion of the Adult Neural Stem Cell Pool. Cell Stem Cell, 2018, 23, 444-452.e4.	11.1	64
26	Epitranscriptomes in the Adult Mammalian Brain: Dynamic Changes Regulate Behavior. Neuron, 2018, 99, 243-245.	8.1	24
27	Temporal Control of Mammalian Cortical Neurogenesis by m6A Methylation. Cell, 2017, 171, 877-889.e17.	28.9	567
28	Zika-Virus-Encoded NS2A Disrupts Mammalian Cortical Neurogenesis by Degrading Adherens Junction Proteins. Cell Stem Cell, 2017, 21, 349-358.e6.	11.1	163
29	Brain-Region-Specific Organoids Using Mini-bioreactors for Modeling ZIKV Exposure. Cell, 2016, 165, 1238-1254.	28.9	1,680
30	Molecular signatures associated with ZIKV exposure in human cortical neural progenitors. Nucleic Acids Research, 2016, 44, 8610-8620.	14.5	155
31	Tbr2-expressing intermediate progenitor cells in the adult mouse hippocampus are unipotent neuronal precursors with limited amplification capacity under homeostasis. Frontiers in Biology, 2015, 10, 262-271.	0.7	25
32	Modeling a Genetic Risk for Schizophrenia in iPSCs and Mice Reveals Neural Stem Cell Deficits Associated with Adherens Junctions and Polarity. Cell Stem Cell, 2014, 15, 79-91.	11.1	238
33	Synaptic dysregulation in a human iPS cell model of mental disorders. Nature, 2014, 515, 414-418.	27.8	471
34	Mind bomb-1 is an essential modulator of long-term memory and synaptic plasticity via the Notch signaling pathway. Molecular Brain, 2012, 5, 40.	2.6	26
35	Survival and Differentiation of Mammary Epithelial Cells in Mammary Gland Development Require Nuclear Retention of Id2 Due to RANK Signaling. Molecular and Cellular Biology, 2011, 31, 4775-4788.	2.3	19
36	Molecule-level imaging of Pax6 mRNA distribution in mouse embryonic neocortex by molecular interaction force microscopy. Nucleic Acids Research, 2009, 37, e10-e10.	14.5	25

Ki-Jun Yoon

#	Article	IF	CITATIONS
37	Crif1 is a novel transcriptional coactivator of STAT3. EMBO Journal, 2008, 27, 642-653.	7.8	61
38	Mind Bomb 1-Expressing Intermediate Progenitors Generate Notch Signaling to Maintain Radial Glial Cells. Neuron, 2008, 58, 519-531.	8.1	175
39	Mind bomb 1 in the lymphopoietic niches is essential for T and marginal zone B cell development. Journal of Experimental Medicine, 2008, 205, 2525-2536.	8.5	46
40	Mind bomb 1 in the lymphopoietic niches is essential for T and marginal zone B cell development. Journal of Cell Biology, 2008, 183, i4-i4.	5.2	0
41	An Obligatory Role of Mind Bomb-1 in Notch Signaling of Mammalian Development. PLoS ONE, 2007, 2, e1221.	2.5	105
42	Snx5, as a Mind bomb-binding protein, is expressed in hematopoietic and endothelial precursor cells in zebrafish. FEBS Letters, 2006, 580, 4409-4416.	2.8	21
43	Neuralized-2 Regulates a Notch Ligand in Cooperation with Mind Bomb-1. Journal of Biological Chemistry, 2006, 281, 36391-36400.	3.4	46
44	Mind Bomb-2 Is an E3 Ligase for Notch Ligand. Journal of Biological Chemistry, 2005, 280, 22335-22342.	3.4	93
45	Mind bomb 1 is essential for generating functional Notch ligands to activate Notch. Development (Cambridge), 2005, 132, 3459-3470.	2.5	221