Stephen Connon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8610109/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanistic Insights into the Organocatalytic Kinetic Resolution of Oxazinones via Alcoholysis. European Journal of Organic Chemistry, 2022, 2022, e202100818.	1.2	0
2	De-novo designed Î ² -lysine derivatives can both augment and diminish the proliferation rates of E. coli through the action of Elongation Factor P. Bioorganic and Medicinal Chemistry Letters, 2022, 59, 128545.	1.0	1
3	Enantioselective N-heterocyclic carbene-catalysed intermolecular crossed benzoin condensations: improved catalyst design and the role of <i>in situ</i> racemisation. Organic and Biomolecular Chemistry, 2021, 19, 248-258.	1.5	14
4	The kinetic resolution of oxazinones by alcoholysis: access to orthogonally protected β-amino acids. Organic and Biomolecular Chemistry, 2021, 19, 7348-7352.	1.5	3
5	The human tRNA-guanine transglycosylase displays promiscuous nucleobase preference but strict tRNA specificity. Nucleic Acids Research, 2021, 49, 4877-4890.	6.5	8
6	Preparation of Lactams from Cyclic Anhydrides <i>via N</i> arboxyanhydride Intermediates. European Journal of Organic Chemistry, 2021, 2021, 5540-5544.	1.2	6
7	Base-free enantioselective S _N 2 alkylation of 2-oxindoles via bifunctional phase-transfer catalysis. Beilstein Journal of Organic Chemistry, 2021, 17, 2287-2294.	1.3	5
8	Divergent Synthesis of γâ€Amino Acid and Î³â€Łactam Derivatives from <i>meso</i> â€Glutaric Anhydrides. Chemistry - A European Journal, 2020, 26, 13378-13382.	1.7	11
9	The eukaryotic tRNA-guanine transglycosylase enzyme inserts queuine into tRNA <i>via</i> a sequential bi–bi mechanism. Chemical Communications, 2020, 56, 3915-3918.	2.2	8
10	C 2 â€Symmetric Cinchona Alkaloid Derivatives: Versatile Catalysts for the Enantioselective Câ^'C Bond Forming Conjugate Addition of Nucleophiles to Simple α,βâ€Unsaturated Acyl Pyrazoles. ChemistrySelect, 2020, 5, 15190-15194.	0.7	1
11	The base-catalysed Tamura cycloaddition reaction: calculation, mechanism, isolation of intermediates and asymmetric catalysis. Chemical Communications, 2019, 55, 11283-11286.	2.2	9
12	Highly Enantioselective Catalytic Kinetic Resolution of αâ€Branched Aldehydes through Formal Cycloaddition with Homophthalic Anhydrides. Chemistry - A European Journal, 2019, 25, 10074-10079.	1.7	10
13	The Steglich Rearrangement of 2â€Oxindole Derivatives Promoted by Anionâ€based Nucleophilic Catalysis. ChemCatChem, 2019, 11, 3776-3780.	1.8	5
14	Highly Enantio―and Diastereoselective Catalytic Asymmetric Tamura Cycloaddition Reactions. Chemistry - A European Journal, 2019, 25, 7270-7274.	1.7	12
15	Catalytic Asymmetric γâ€Lactam Synthesis from Enolisable Anhydrides and Imines. Chemistry - A European Journal, 2019, 25, 7275-7279.	1.7	15
16	Highly chemoselective, sterically sensitive NHC-catalysed amine acylation with pyridil. Chemical Communications, 2019, 55, 13526-13529.	2.2	1
17	Enantioselective Alkylation of 2â€Oxindoles Catalyzed by a Bifunctional Phaseâ€Transfer Catalyst: Synthesis of (â~)â€Debromoflustramineâ€B. Chemistry - A European Journal, 2018, 24, 4528-4531.	1.7	21
18	Highly chemoselective intermolecular cross-benzoin reactions using an ad hoc designed novel N-heterocyclic carbene catalyst. Organic and Biomolecular Chemistry, 2018, 16, 780-786.	1.5	15

#	Article	IF	CITATIONS
19	Dynamic kinetic resolution of bis-aryl succinic anhydrides: enantioselective synthesis of densely functionalised Î ³ -butyrolactones. Chemical Communications, 2018, 54, 3231-3234.	2.2	21
20	Conformational control of nonplanar free base porphyrins: towards bifunctional catalysts of tunable basicity. Chemical Communications, 2018, 54, 26-29.	2.2	80
21	Synthesis of α-alkylated γ-butyrolactones with concomitant anhydride kinetic resolution using a sulfamide-based catalyst. Organic and Biomolecular Chemistry, 2018, 16, 7574-7578.	1.5	7
22	Catalytic Asymmetric Cycloadditions between Aldehydes and Enolizable Anhydrides: <i>cis</i> -Selective Dihydroisocoumarin Formation. Journal of Organic Chemistry, 2018, 83, 15499-15511.	1.7	13
23	Enantioselective acyl-transfer catalysis by fluoride ions. Chemical Communications, 2018, 54, 10108-10111.	2.2	23
24	<i>In vivo</i> modification of tRNA with an artificial nucleobase leads to full disease remission in an animal model of multiple sclerosis. Nucleic Acids Research, 2017, 45, gkw847.	6.5	20
25	Catalytic asymmetric Tamura cycloadditions involving nitroalkenes. Organic and Biomolecular Chemistry, 2017, 15, 1463-1474.	1.5	25
26	Direct, efficient NHC-catalysed aldehyde oxidative amidation: in situ formed benzils as unconventional acylating agents. Chemical Communications, 2017, 53, 10212-10215.	2.2	22
27	A DFT mechanistic study of the organocatalytic asymmetric reaction of aldehydes and homophthalic anhydride. Chemical Communications, 2017, 53, 8874-8877.	2.2	27
28	The first catalytic asymmetric cycloadditions of imines with an enolisable anhydride. Organic and Biomolecular Chemistry, 2016, 14, 6955-6959.	1.5	34
29	Enantioselective Alkylative Kinetic Resolution of 2-Oxindole-Derived Enolates Promoted by Bifunctional Phase Transfer Catalysts. Organic Letters, 2016, 18, 5204-5207.	2.4	20
30	Catalytic formal cycloadditions between anhydrides and ketones: excellent enantio and diastereocontrol, controllable decarboxylation and the formation of adjacent quaternary stereocentres. Organic and Biomolecular Chemistry, 2016, 14, 3040-3046.	1.5	30
31	An Organocatalytic Process for the Hydrolytic Cleavage of Dithianes Mediated by Imidazolium Ions: No Harsh Agents Required. European Journal of Organic Chemistry, 2015, 2015, 188-194.	1.2	5
32	A Practical Aryl Unit for Azlactone Dynamic Kinetic Resolution: Orthogonally Protected Products and A Ligationâ€Inspired Coupling Process. Angewandte Chemie - International Edition, 2015, 54, 813-817.	7.2	24
33	Diaminocyclopropenylidene Organocatalysts: Beyond Nâ€Heterocyclic Carbenes. Angewandte Chemie - International Edition, 2014, 53, 1203-1205.	7.2	66
34	Catalytic Asymmetric Tamura Cycloadditions. Angewandte Chemie - International Edition, 2014, 53, 2628-2632.	7.2	108
35	Tandem ionic liquid antimicrobial toxicity and asymmetric catalysis study: carbonyl-ene reactions with trifluoropyruvate. Green Chemistry, 2013, 15, 2727.	4.6	11
36	Câ€5′‣ubstituted Cinchona Alkaloid Derivatives Catalyse the First Highly Enantioselective Dynamic Kinetic Resolutions of Azlactones by Thiolysis. European Journal of Organic Chemistry, 2013, 2013, 5398-5413.	1.2	26

#	Article	IF	CITATIONS
37	A new generation of aprotic yet BrĂ̧nsted acidic imidazolium salts: effect of ester/amide groups in the C-2, C-4 and C-5 on antimicrobial toxicity and biodegradation. Green Chemistry, 2013, 15, 2747.	4.6	49
38	A new generation of aprotic yet BrÃ,nsted acidic imidazolium salts: low toxicity, high recyclability and greatly improved activity. Green Chemistry, 2013, 15, 2740.	4.6	47
39	The asymmetric synthesis of terminal aziridines by methylene transfer from sulfonium ylides to imines. Organic and Biomolecular Chemistry, 2013, 11, 3535.	1.5	18
40	The catalytic versatility of low toxicity dialkyltriazolium salts: in situ modification facilitates diametrically opposed catalysis modes in one pot. Chemical Communications, 2013, 49, 5316.	2.2	48
41	NHC-catalysed aerobic aldehyde-esterifications with alcohols: no additives or cocatalysts required. Chemical Communications, 2013, 49, 6510.	2.2	64
42	Aerobic oxidation of NHC-catalysed aldehyde esterifications with alcohols: benzoin, not the Breslow intermediate, undergoes oxidation. Chemical Communications, 2013, 49, 6513.	2.2	77
43	Organocatalytic Aerobic Oxidative Cleavage of Cyclic 1,2-Diketones. Synlett, 2013, 24, 1225-1228.	1.0	8
44	(S)-Proline-Derived Catalysts for the Acylative Kinetic Resolution of Alcohols: A Remote Structural Change Allows a Complete Selectivity Switch. Synlett, 2013, 24, 1728-1734.	1.0	11
45	The Dynamic Kinetic Resolution of Azlactones with Thiol Nucleophiles Catalyzed by Arylated, Deoxygenated Cinchona Alkaloids. Journal of Organic Chemistry, 2012, 77, 2407-2414.	1.7	40
46	Highly tunable arylated cinchona alkaloids as bifunctional catalysts. Chemical Communications, 2012, 48, 1443.	2.2	40
47	Selenide Ions as Catalysts for Homo- and Crossed-Tishchenko Reactions of Expanded Scope. Organic Letters, 2012, 14, 1074-1077.	2.4	56
48	A novel C-5â \in^2 substituted cinchona alkaloid-derived catalyst promotes additions of alkyl thiols to nitroolefins with excellent enantioselectivity. Chemical Communications, 2012, 48, 2849.	2.2	44
49	NHC-catalysed, chemoselective crossed-acyloin reactions. Chemical Science, 2012, 3, 735-740.	3.7	94
50	The Thiolate atalyzed Intermolecular Crossed Tishchenko Reaction: Highly Chemoselective Coupling of Two Different Aromatic Aldehydes. Angewandte Chemie - International Edition, 2012, 51, 10866-10870.	7.2	38
51	Highly enantioselective ylide-mediated synthesis of terminal epoxides. Chemical Communications, 2012, 48, 7814.	2.2	24
52	Catalytic, enantio- and diastereoselective synthesis of Î ³ -butyrolactones incorporating quaternary stereocentres. Chemical Communications, 2012, 48, 6502.	2.2	50
53	A Catalytic Asymmetric Reaction Involving Enolizable Anhydrides. Organic Letters, 2012, 14, 1850-1853.	2.4	56
54	Organocatalytic Asymmetric Additions to <i>meso</i> â€Anhydrides and Azlactones. ChemCatChem, 2012, 4, 151-168.	1.8	49

#	Article	IF	CITATIONS
55	Highly Chemoselective Direct Crossed Aliphaticâ^Aromatic Acyloin Condensations with Triazolium-Derived Carbene Catalysts. Journal of Organic Chemistry, 2011, 76, 347-357.	1.7	106
56	Microwave-assisted efficient thiolate-catalysed homo- and crossed intermolecular Tishchenko reactions. New Journal of Chemistry, 2011, 35, 551.	1.4	27
57	The immobilisation of chiral organocatalysts on magnetic nanoparticles: the support particle cannot always be considered inert. Organic and Biomolecular Chemistry, 2011, 9, 7929.	1.5	85
58	A New Class of Urea-Substituted Cinchona Alkaloids Promote Highly Enantioselective Nitroaldol reactions of Trifluoromethylketones. Organic Letters, 2011, 13, 1298-1301.	2.4	59
59	Chemoselective Crossed Acyloin Condensations: Catalyst and Substrate Control. Synthesis, 2011, 2011, 190-198.	1.2	7
60	Urea-catalyzed transthioesterification: towards a new kinetic resolution methodology. Arkivoc, 2011, 2011, 115-126.	0.3	11
61	Tunable Bromomagnesium Thiolate Tishchenko Reaction Catalysts: Intermolecular Aldehyde–Trifluoromethylketone Coupling. Angewandte Chemie - International Edition, 2010, 49, 3045-3048.	7.2	63
62	Concise synthesis and CDK/GSK inhibitory activity of the missing 9-azapaullones. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 4940-4944.	1.0	23
63	Synergistic organocatalysis in the kinetic resolution of secondary thiols with concomitant desymmetrization of an anhydride. Nature Chemistry, 2010, 2, 380-384.	6.6	86
64	Catalytic (Asymmetric) Methylene Transfer to Aldehydes. Organic Letters, 2010, 12, 608-611.	2.4	32
65	Highly recyclable, imidazolium derived ionic liquids of low antimicrobial and antifungal toxicity: A new strategy for acid catalysis. Green Chemistry, 2010, 12, 1157.	4.6	63
66	Pyridinium Ion Catalysis of Carbonyl Protection Reactions. Synthesis, 2009, 2009, 4082-4086.	1.2	1
67	The Design of Novel, Synthetically Useful (Thio)urea-Based Organocatalysts. Synlett, 2009, 2009, 0354-0376.	1.0	26
68	The First Magnetic Nanoparticleâ€Supported Chiral DMAP Analogue: Highly Enantioselective Acylation and Excellent Recyclability. Chemistry - A European Journal, 2009, 15, 5669-5673.	1.7	128
69	The enantioselective benzoin condensation promoted by chiral triazolium precatalysts: stereochemical control via hydrogen bonding. Organic and Biomolecular Chemistry, 2009, 7, 3584.	1.5	58
70	Highly Enantioselective Benzoin Condensation Reactions Involving a Bifunctional Protic Pentafluorophenyl-Substituted Triazolium Precatalyst. Journal of Organic Chemistry, 2009, 74, 9214-9217.	1.7	146
71	The Catalytic Asymmetric Strecker Reaction: Ketimines Continue to Join the Fold. Angewandte Chemie - International Edition, 2008, 47, 1176-1178.	7.2	121
72	N-Alkyl salts derived from ephedrine do not promote enantioselective Corey–Chaykovsky reactions involving sulfonium methylides under phase-transfer conditions. Tetrahedron: Asymmetry, 2008, 19, 1414-1417.	1.8	5

#	Article	IF	CITATIONS
73	Nucleophilic carbene-catalysed oxidative esterification reactions. Tetrahedron Letters, 2008, 49, 4003-4006.	0.7	139
74	Organocatalytic Asymmetric Addition of Alcohols and Thiols to Activated Electrophiles: Efficient Dynamic Kinetic Resolution and Desymmetrization Protocols. Journal of Organic Chemistry, 2008, 73, 6409-6412.	1.7	85
75	Computational Study-Led Organocatalyst Design:  A Novel, Highly Active Urea-Based Catalyst for Addition Reactions to Epoxides. Journal of Organic Chemistry, 2008, 73, 948-956.	1.7	69
76	Asymmetric catalysis with bifunctional cinchona alkaloid-based urea and thiourea organocatalysts. Chemical Communications, 2008, , 2499.	2.2	778
77	Urea derivatives are highly active catalysts for the base-mediated generation of terminal epoxides from aldehydes and trimethylsulfonium iodide. Organic and Biomolecular Chemistry, 2008, 6, 1339.	1.5	45
78	Highly Enantioselective Desymmetrization of <i>Meso</i> Anhydrides by a Bifunctional Thiourea-Based Organocatalyst at Low Catalyst Loadings and Room Temperature. Journal of Organic Chemistry, 2008, 73, 2454-2457.	1.7	102
79	Unexpected catalysis: aprotic pyridinium ions as active and recyclable BrÃ,nsted acid catalysts in protic media. Organic Letters, 2008, 10, 4935-4938.	2.4	50
80	Asymmetric organocatalytic reductions mediated by dihydropyridines. Organic and Biomolecular Chemistry, 2007, 5, 3407.	1.5	177
81	A reductase-mimicking thiourea organocatalyst incorporating a covalently bound NADH analogue: efficient 1,2-diketone reduction with in situ prosthetic group generation and recycling. Chemical Communications, 2007, , 1421.	2.2	59
82	Readily Accessible 9-epi-amino Cinchona Alkaloid Derivatives Promote Efficient, Highly Enantioselective Additions of Aldehydes and Ketones to Nitroolefins. Organic Letters, 2007, 9, 599-602.	2.4	272
83	A Magnetic-Nanoparticle-Supported 4-N,N-Dialkylaminopyridine Catalyst: Excellent Reactivity Combined with Facile Catalyst Recovery and Recyclability. Angewandte Chemie - International Edition, 2007, 46, 4329-4332.	7.2	258
84	Nonenzymatic Acylative Kinetic Resolution of Baylisâ^'Hillman Adducts. Journal of Organic Chemistry, 2007, 72, 7066-7069.	1.7	67
85	Stereoselective Synthesis of Highly Functionalized Nitrocyclopropanes via Organocatalyic Conjugate Addition to Nitroalkenes. Journal of Organic Chemistry, 2006, 71, 7494-7497.	1.7	126
86	Highlights in Organic Chemistry (Catalytic Asymmetric Acyl-transfer Mediated by Chiral Pyridine) Tj ETQq0 0 0 rş	3BT ∕Overl 0.2	ock 10 Tf 50
87	Novel axially chiral bis-arylthiourea-based organocatalysts for asymmetric Friedel–Crafts type reactions. Tetrahedron Letters, 2006, 47, 7037-7042.	0.7	135
88	Asymmetric acyl-transfer promoted by readily assembled chiral 4-N,N-dialkylaminopyridine derivatives. Organic and Biomolecular Chemistry, 2006, 4, 2785-2793.	1.5	55
89	Urea- and Thiourea-Substituted Cinchona Alkaloid Derivatives as Highly Efficient Bifunctional Organocatalysts for the Asymmetric Addition of Malonate to Nitroalkenes: Inversion of Configuration at C-9 Dramatically Improves Catalyst Performance ChemInform, 2006, 37, no.	0.1	0

90Organocatalysis Mediated by (Thio)urea Derivatives. Chemistry - A European Journal, 2006, 12, 5418-5427.1.7805

#	Article	IF	CITATIONS
91	Chiral Phosphoric Acids: Powerful Organocatalysts for Asymmetric Addition Reactions to Imines. Angewandte Chemie - International Edition, 2006, 45, 3909-3912.	7.2	376
92	Urea- and Thiourea-Substituted Cinchona Alkaloid Derivatives as Highly Efficient Bifunctional Organocatalysts for the Asymmetric Addition of Malonate to Nitroalkenes: Inversion of Configuration at C9 Dramatically Improves Catalyst Performance Angewandte Chemie - International Edition, 2005, 44, 6367-6370.	7.2	631
93	Acrylamide in the Baylis?Hillman Reaction: Expanded Reaction Scope and the Unexpected Superiority of DABCO over More Basic Tertiary Amine Catalysts ChemInform, 2005, 36, no.	0.1	Ο
94	Novel Amine-Catalyzed Hydroalkoxylation Reactions of Activated Alkenes and Alkynes ChemInform, 2005, 36, no.	0.1	0
95	Kinetic Resolution of sec-Alcohols Using a New Class of Readily Assembled (S)-Proline-Derived 4-(Pyrrolidino)-pyridine Analogues ChemInform, 2005, 36, no.	0.1	0
96	Kinetic resolution of sec-alcohols using a new class of readily assembled (S)-proline-derived 4-(pyrrolidino)-pyridine analogues. Organic and Biomolecular Chemistry, 2005, 3, 981-984.	1.5	80
97	Novel amine-catalysed hydroalkoxylation reactions of activated alkenes and alkynes. Chemical Communications, 2005, , 227.	2.2	66
98	Olefin Metathesis Reactions. , 2005, , 169-180.		5
99	Acceleration of the DABCO-Promoted Baylis—Hillman Reaction Using a Recoverable H-Bonding Organocatalyst ChemInform, 2004, 35, no.	0.1	0
100	Acceleration of the DABCO-promoted Baylis–Hillman reaction using a recoverable H-bonding organocatalyst. Tetrahedron Letters, 2004, 45, 1301-1305.	0.7	143
101	Acrylamide in the Baylisâ~'Hillman Reaction:Â Expanded Reaction Scope and the Unexpected Superiority of DABCO over More Basic Tertiary Amine Catalysts. Journal of Organic Chemistry, 2004, 69, 6496-6499.	1.7	82
102	Jüngste Entwicklungen bei der gekreuzten Olefinmetathese. Angewandte Chemie, 2003, 115, 1944-1968.	1.6	258
103	Recent Developments in Olefin Cross-Metathesis. ChemInform, 2003, 34, no.	0.1	0
104	Ruthenium Olefin Metathesis Catalysts with Modified Styrene Ethers: Influence of Steric and Electronic Effects ChemInform, 2003, 34, no.	0.1	0
105	Recent Developments in Olefin Cross-Metathesis. Angewandte Chemie - International Edition, 2003, 42, 1900-1923.	7.2	1,078
106	Ruthenium olefin metathesis catalysts with modified styrene ethers: influence of steric and electronic effects. Tetrahedron, 2003, 59, 6545-6558.	1.0	139
107	Ein selbstgenerierender, hochaktiver und wiederverwendbarer Katalysator für die Olefinmetathese. Angewandte Chemie, 2002, 114, 3989-3993.	1.6	39
108	A solid-Supported phosphine-Free ruthenium alkylidene for olefin metathesis in methanol and water. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 1873-1876.	1.0	118

#	Article	IF	CITATIONS
109	Ring opening–cross metathesis of unstrained cycloalkenes. Chemical Communications, 2001, , 1796-1797.	2.2	54
110	Diels–Alder cycloadditions of stabilised 2,3-pyridynes. Tetrahedron Letters, 2001, 42, 735-737.	0.7	16
111	Highly Efficient and Recyclable Polymer-Bound Catalyst for Olefin Metathesis Reactions. Synlett, 2001, 2001, 1547-1550.	1.0	93
112	Substituted 3,4-pyridynes: clean cycloadditions. Journal of the Chemical Society, Perkin Transactions 1, 2000, , 1245-1249.	1.3	28