Daniel M Kammen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8610041/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ethanol Can Contribute to Energy and Environmental Goals. Science, 2006, 311, 506-508.	12.6	2,304
2	Materials Availability Expands the Opportunity for Large-Scale Photovoltaics Deployment. Environmental Science & Technology, 2009, 43, 2072-2077.	10.0	1,042
3	From Linear Fuel Switching to Multiple Cooking Strategies: A Critique and Alternative to the Energy Ladder Model. World Development, 2000, 28, 2083-2103.	4.9	696
4	Energy storage deployment and innovation for the clean energy transition. Nature Energy, 2017, 2, .	39.5	676
5	Putting renewables and energy efficiency to work: How many jobs can the clean energy industry generate in the US?. Energy Policy, 2010, 38, 919-931.	8.8	535
6	Effects of US Maize Ethanol on Global Land Use and Greenhouse Gas Emissions: Estimating Market-mediated Responses. BioScience, 2010, 60, 223-231.	4.9	456
7	City-integrated renewable energy for urban sustainability. Science, 2016, 352, 922-928.	12.6	450
8	Indoor air pollution from biomass combustion and acute respiratory infections in Kenya: an exposure-response study. Lancet, The, 2001, 358, 619-624.	13.7	425
9	Near-real-time monitoring of global CO2 emissions reveals the effects of the COVID-19 pandemic. Nature Communications, 2020, 11, 5172.	12.8	420
10	Fixing a Critical Climate Accounting Error. Science, 2009, 326, 527-528.	12.6	399
11	The health impacts of exposure to indoor air pollution from solid fuels in developing countries: knowledge, gaps, and data needs Environmental Health Perspectives, 2002, 110, 1057-1068.	6.0	347
12	Spatial Distribution of U.S. Household Carbon Footprints Reveals Suburbanization Undermines Greenhouse Gas Benefits of Urban Population Density. Environmental Science & Technology, 2014, 48, 895-902.	10.0	327
13	Quantifying Carbon Footprint Reduction Opportunities for U.S. Households and Communities. Environmental Science & Technology, 2011, 45, 4088-4095.	10.0	323
14	Community-Based Electric Micro-Grids Can Contribute to Rural Development: Evidence from Kenya. World Development, 2009, 37, 1208-1221.	4.9	310
15	U.S. energy research and development: Declining investment, increasing need, and the feasibility of expansion. Energy Policy, 2007, 35, 746-755.	8.8	290
16	Decentralized energy systems for clean electricity access. Nature Climate Change, 2015, 5, 305-314.	18.8	289
17	Mortality and Greenhouse Gas Impacts of Biomass and Petroleum Energy Futures in Africa. Science, 2005, 308, 98-103.	12.6	263
18	Evaluation of a proposal for reliable low-cost grid power with 100% wind, water, and solar. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6722-6727.	7.1	250

#	Article	IF	CITATIONS
19	Energy access scenarios to 2030 for the power sector in sub-Saharan Africa. Utilities Policy, 2012, 20, 1-16.	4.0	200
20	Exploring the trade-offs between electric heating policy and carbon mitigation in China. Nature Communications, 2020, 11, 6054.	12.8	198
21	Collective frequencies and metastability in networks of limit-cycle oscillators with time delay. Physical Review Letters, 1991, 67, 2753-2756.	7.8	195
22	Techno–ecological synergies of solar energy for global sustainability. Nature Sustainability, 2019, 2, 560-568.	23.7	187
23	The Energy-Poverty-Climate Nexus. Science, 2010, 330, 1181-1182.	12.6	174
24	Disparities in rooftop photovoltaics deployment in the United States by race and ethnicity. Nature Sustainability, 2019, 2, 71-76.	23.7	168
25	Letting the (energy) Gini out of the bottle: Lorenz curves of cumulative electricity consumption and Gini coefficients as metrics of energy distribution and equity. Energy Policy, 2005, 33, 1825-1832.	8.8	158
26	Where, when and how much solar is available? A provincial-scale solar resource assessment for China. Renewable Energy, 2016, 85, 74-82.	8.9	156
27	Underinvestment: The Energy Technology and R&D Policy Challenge. Science, 1999, 285, 690-692.	12.6	148
28	High-resolution modeling of the western North American power system demonstrates low-cost and low-carbon futures. Energy Policy, 2012, 43, 436-447.	8.8	144
29	Biomass enables the transition to a carbon-negative power system across western NorthÂAmerica. Nature Climate Change, 2015, 5, 230-234.	18.8	140
30	Where, when and how much wind is available? A provincial-scale wind resource assessment for China. Energy Policy, 2014, 74, 116-122.	8.8	128
31	Quantifying the credibility of energy projections from trends in past data. Energy Policy, 1994, 22, 119-130.	8.8	126
32	The quiet (energy) revolution. Energy Policy, 1996, 24, 81-111.	8.8	123
33	CLIMATE CHANGE: Equity and Greenhouse Gas Responsibility. Science, 2000, 289, 2287-2287.	12.6	123
34	Comparison of Emissions and Residential Exposure from Traditional and Improved Cookstoves in Kenya. Environmental Science & Technology, 2000, 34, 578-583.	10.0	119
35	The role of large-scale energy storage design and dispatch in the power grid: A study of very high grid penetration of variable renewable resources. Applied Energy, 2014, 134, 75-89.	10.1	117
36	Power system balancing for deep decarbonization of the electricity sector. Applied Energy, 2016, 162, 1001-1009.	10.1	117

#	Article	IF	CITATIONS
37	SWITCH-China: A Systems Approach to Decarbonizing China's Power System. Environmental Science & Technology, 2016, 50, 5467-5473.	10.0	115
38	Fuel cell system economics: comparing the costs of generating power with stationary and motor vehicle PEM fuel cell systems. Energy Policy, 2004, 32, 101-125.	8.8	112
39	An innovation-focused roadmap for a sustainable global photovoltaic industry. Energy Policy, 2014, 67, 159-169.	8.8	111
40	Evidence of under-investment in energy R&D in the United States and the impact of Federal policy. Energy Policy, 1999, 27, 575-584.	8.8	109
41	Investigating the impact of wind–solar complementarities on energy storage requirement and the corresponding supply reliability criteria. Applied Energy, 2016, 168, 130-145.	10.1	106
42	A commercialization strategy for carbon-negative energy. Nature Energy, 2016, 1, .	39.5	99
43	Europe's renewable energy directive poised to harm global forests. Nature Communications, 2018, 9, 3741.	12.8	98
44	Burning biodiversity: Woody biomass use by commercial and subsistence groups in western Uganda's forests. Biological Conservation, 2007, 134, 232-241.	4.1	97
45	The Epistemology of Sustainable Resource Use: Managing Forest Products, Swiddens, and High- Yielding Variety Crops. Human Organization, 1997, 56, 91-101.	0.3	95
46	A Survey of the Status and Challenges of Green Building Development in Various Countries. Sustainability, 2019, 11, 5385.	3.2	86
47	Household Energy, Indoor Air Pollution, and Health in Developing Countries: Knowledge Base for Effective Interventions. Annual Review of Environment and Resources, 2002, 27, 233-270.	1.2	83
48	ASSESSING THE COSTS OF ELECTRICITY. Annual Review of Environment and Resources, 2004, 29, 301-344.	13.4	82
49	The Rise of Renewable Energy. Scientific American, 2006, 294, 84-93.	1.0	80
50	Photovoltaic module quality in the Kenyan solar home systems market. Energy Policy, 2002, 30, 477-499.	8.8	78
51	Deep carbon reductions in California require electrification and integration across economic sectors. Environmental Research Letters, 2013, 8, 014038.	5.2	77
52	Cookstoves for the Developing World. Scientific American, 1995, 273, 72-75.	1.0	72
53	Evaluating the health benefits of transitions in household energy technologies in Kenya. Energy Policy, 2002, 30, 815-826.	8.8	71
54	Greenhouse Gas Implications of Household Energy Technology in Kenya. Environmental Science & Technology, 2003, 37, 2051-2059.	10.0	68

#	Article	IF	CITATIONS
55	ASEAN grid flexibility: Preparedness for grid integration of renewable energy. Energy Policy, 2019, 128, 711-726.	8.8	66
56	Stakeholders in climate science: Beyond lip service?. Science, 2015, 350, 743-744.	12.6	65
57	Towards an Integrated Framework for Development and Environment Policy: The Dynamics of Environmental Kuznets Curves. World Development, 2001, 29, 1421-1434.	4.9	64
58	Rooftop solar photovoltaic potential in cities: how scalable are assessment approaches?. Environmental Research Letters, 2017, 12, 125005.	5.2	63
59	Population ageing and deaths attributable to ambient PM2·5 pollution: a global analysis of economic cost. Lancet Planetary Health, The, 2021, 5, e356-e367.	11.4	63
60	Renewable energy sector development in the Caribbean: Current trends and lessons from history. Energy Policy, 2013, 57, 244-252.	8.8	59
61	Regional carbon footprints of households: a German case study. Environment, Development and Sustainability, 2016, 18, 577-591.	5.0	57
62	ENERGY MANAGEMENT AND GLOBAL HEALTH. Annual Review of Environment and Resources, 2004, 29, 383-419.	13.4	56
63	SunShot Solar Power Reduces Costs and Uncertainty in Future Low-Carbon Electricity Systems. Environmental Science & Technology, 2013, 47, 9053-9060.	10.0	56
64	Supporting security and adequacy in future energy systems: The need to enhance long-term energy system models to better treat issues related to variability. International Journal of Energy Research, 2015, 39, 377-396.	4.5	56
65	Vernacular Models of Development: An Analysis of Indonesia Under the "New Order― World Development, 2001, 29, 619-639.	4.9	53
66	Energy return on investment (EROI) of mini-hydro and solar PV systems designed for a mini-grid. Renewable Energy, 2016, 99, 410-419.	8.9	48
67	Strategic siting and regional grid interconnections key to low-carbon futures in African countries. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3004-E3012.	7.1	48
68	Comprehensive evaluation of regional energy internet using a fuzzy analytic hierarchy process based on cloud model: A case in China. Energy, 2021, 228, 120569.	8.8	48
69	A household carbon footprint calculator for islands: Case study of the United States Virgin Islands. Ecological Economics, 2012, 80, 8-14.	5.7	46
70	Global patterns of daily CO2 emissions reductions in the first year of COVID-19. Nature Geoscience, 2022, 15, 615-620.	12.9	46
71	Assessment of a low-cost, point-of-use, ultraviolet water disinfection technology. Journal of Water and Health, 2008, 6, 53-65.	2.6	43
72	<i>Poverty, Energy, and Resource Use in Developing Countries</i> . Annals of the New York Academy of Sciences, 2008, 1136, 348-357.	3.8	42

#	Article	IF	CITATIONS
73	Modeling the impact of EVs in the Chinese power system: Pathways for implementing emissions reduction commitments in the power and transportation sectors. Energy Policy, 2021, 149, 111962.	8.8	42
74	Oscillator-phase coupling for different two-dimensional network connectivities. Physical Review A, 1991, 44, 6895-6904.	2.5	41
75	Bringing Power to the People: Promoting Appropriate Energy Technologies in the Developing World. Environment, 1999, 41, 10-15.	1.4	41
76	National trajectories of carbon emissions: analysis of proposals to foster the transition to low-carbon economies. Global Environmental Change, 1998, 8, 183-208.	7.8	40
77	Energy planning and development in Malaysian Borneo: Assessing the benefits of distributed technologies versus large scale energy mega-projects. Energy Strategy Reviews, 2015, 8, 15-29.	7.3	39
78	Geospatial multi-criteria analysis for identifying high priority clean energy investment opportunities: A case study on land-use conflict in Bangladesh. Applied Energy, 2019, 235, 1457-1467.	10.1	39
79	Sustainability lessons from shale development in the United States for Mexico and other emerging unconventional oil and gas developers. Renewable and Sustainable Energy Reviews, 2018, 82, 1320-1332.	16.4	38
80	Oil, Energy Poverty and Resource Dependence in West Africa. Journal of Energy and Natural Resources Law, 2013, 31, 33-53.	0.9	35
81	Information and communication technologies and climate change adaptation in Latin America and the Caribbean: a framework for action. Climate and Development, 2015, 7, 208-222.	3.9	35
82	Affordable Energy for Humanity: A Global Movement to Support Universal Clean Energy Access. Proceedings of the IEEE, 2019, 107, 1780-1789.	21.3	35
83	Deploy diverse renewables to save tropical rivers. Nature, 2019, 569, 330-332.	27.8	35
84	Sustainable Low-Carbon Expansion for the Power Sector of an Emerging Economy: The Case of Kenya. Environmental Science & Technology, 2017, 51, 10232-10242.	10.0	33
85	Carbon Footprint Planning: Quantifying Local and State Mitigation Opportunities for 700 California Cities. Urban Planning, 2018, 3, 35-51.	1.3	33
86	The delivery of low-cost, low-carbon rural energy services. Energy Policy, 2011, 39, 4520-4528.	8.8	32
87	Sea-level rise or fall?. Nature, 1992, 357, 25-25.	27.8	31
88	Engineering, institutions, and the public interest: Evaluating product quality in the Kenyan solar photovoltaics industry. Energy Policy, 2007, 35, 2960-2968.	8.8	31
89	Trace Metal Content of Coal Exacerbates Air-Pollution-Related Health Risks: The Case of Lignite Coal in Kosovo. Environmental Science & Technology, 2018, 52, 2359-2367.	10.0	31
90	The Climate Impacts of Bioenergy Systems Depend on Market and Regulatory Policy Contexts. Environmental Science & Technology, 2010, 44, 7347-7350.	10.0	29

#	Article	IF	CITATIONS
91	Quantifying the social equity of carbon mitigation strategies. Climate Policy, 2012, 12, 690-703.	5.1	29
92	The influence of negative emission technologies and technology policies on the optimal climate mitigation portfolio. Climatic Change, 2012, 113, 141-162.	3.6	29
93	Reduce growth rate of light-duty vehicle travel to meet 2050 global climate goals. Environmental Research Letters, 2011, 6, 024018.	5.2	27
94	Comment on "Indirect land use change for biofuels: Testing predictions and improving analytical methodologies―by Kim and Dale: statistical reliability and the definition of the indirect land use change (iLUC) issue. Biomass and Bioenergy, 2011, 35, 4485-4487.	5.7	27
95	Assessing the impacts of nuclear desalination and geoengineering to address China's water shortages. Desalination, 2015, 360, 1-7.	8.2	26
96	Comparison of low-carbon pathways for California. Climatic Change, 2015, 131, 545-557.	3.6	26
97	Scenarios to decarbonize residential water heating in California. Energy Policy, 2017, 109, 441-451.	8.8	26
98	Mapping of affordability levels for photovoltaic-based electricity generation in the solar belt of sub-Saharan Africa, East Asia and South Asia. Scientific Reports, 2021, 11, 3226.	3.3	26
99	Immediate actions on coal phaseout enable a just low-carbon transition in China's power sector. Applied Energy, 2022, 308, 118401.	10.1	26
100	Informing the Financing of Universal Energy Access: An Assessment of Current Financial Flows. Electricity Journal, 2011, 24, 57-82.	2.5	25
101	Innovations in financing that drive cost parity for long-term electricity sustainability: An assessment of Italy, Europe's fastest growing solar photovoltaic market. Energy for Sustainable Development, 2014, 19, 130-137.	4.5	25
102	Energy access for sustainable development. Environmental Research Letters, 2019, 14, 020201.	5.2	25
103	On-Demand Automotive Fleet Electrification Can Catalyze Global Transportation Decarbonization and Smart Urban Mobility. Environmental Science & amp; Technology, 2020, 54, 7027-7033.	10.0	24
104	Energy R&D: investment challenge. Materials Today, 2002, 5, 28-33.	14.2	23
105	Characterization of the mechanism of gasification of a powder river basin coal with a composite catalyst for producing desired syngases and liquids. Applied Catalysis A: General, 2014, 475, 116-126.	4.3	23
106	An action agenda for Africa's electricity sector. Science, 2021, 373, 616-619.	12.6	23
107	What's in a stove? A review of the user preferences in improved stove designs. Energy Research and Social Science, 2021, 81, 102281.	6.4	22
108	Plug-in-Hybrid Vehicle Use, Energy Consumption, and Greenhouse Emissions: An Analysis of Household Vehicle Placements in Northern California. Energies, 2011, 4, 435-457.	3.1	21

#	Article	IF	CITATIONS
109	Joint strategic energy and river basin planning to reduce dam impacts on rivers in Myanmar. Environmental Research Letters, 2021, 16, 054054.	5.2	20
110	The inhabited environment, infrastructure development and advanced urbanization in China's Yangtze River Delta Region. Environmental Research Letters, 2016, 11, 124020.	5.2	19
111	Countercyclical energy and climate policy for the U.S Wiley Interdisciplinary Reviews: Climate Change, 2016, 7, 5-12.	8.1	19
112	Recalibrating climate prospects. Environmental Research Letters, 2019, 14, 120201.	5.2	19
113	Day-Ahead Wind Power Forecasting Based on Wind Load Data Using Hybrid Optimization Algorithm. Sustainability, 2021, 13, 1164.	3.2	19
114	Promoting renewable energy and energy efficiency in Africa: a framework to evaluate employment generation and cost effectiveness. Environmental Research Letters, 2017, 12, 035008.	5.2	18
115	Can the US keep the PACE? A natural experiment in accelerating the growth of solar electricity. Applied Energy, 2017, 191, 163-169.	10.1	17
116	Sustainable silicon photovoltaics manufacturing in a global market: A techno-economic, tariff and transportation framework. Applied Energy, 2018, 212, 704-719.	10.1	17
117	Exploring the Enabling Environments, Inherent Characteristics and Intrinsic Motivations Fostering Global Electricity Decarbonization. Energy Research and Social Science, 2020, 61, 101343.	6.4	17
118	Evidence and future scenarios of a low-carbon energy transition in Central America: a case study in Nicaragua. Environmental Research Letters, 2015, 10, 104002.	5.2	16
119	Evaluating cross-sectoral impacts of climate change and adaptations on the energy-water nexus: a framework and California case study. Environmental Research Letters, 2020, 15, 124065.	5.2	16
120	Accelerating the Global Transformation to 21st Century Power Systems. Electricity Journal, 2013, 26, 39-51.	2.5	15
121	Distributed Resources Shift Paradigms on Power System Design, Planning, and Operation: An Application of the GAP Model. Proceedings of the IEEE, 2019, 107, 1906-1922.	21.3	15
122	Design and implementation of carbon cap and dividend policies. Energy Policy, 2011, 39, 477-486.	8.8	14
123	An analytic framework to assess future electricity options in Kosovo. Environmental Research Letters, 2016, 11, 104013.	5.2	14
124	Middleware Architectures for the Smart Grid: A Survey on the State-of-the-Art, Taxonomy and Main Open Issues. IEEE Communications Surveys and Tutorials, 2018, 20, 2992-3033.	39.4	14
125	Cross-sector storage and modeling needed for deep decarbonization. Joule, 2021, 5, 2529-2534.	24.0	14
126	Pure orientation filtering: A scale-invariant image-processing tool for perception research and data compression. Behavior Research Methods, 1986, 18, 559-564.	1.3	13

#	Article	IF	CITATIONS
127	Opportunities for behavioral energy efficiency and flexible demand in data-limited low-carbon resource constrained environments. Applied Energy, 2018, 228, 512-523.	10.1	13
128	A quantitative, equitable framework for urban transportation electrification: Oakland, California as a mobility model of climate justice. Sustainable Cities and Society, 2021, 74, 103179.	10.4	13
129	Urban structure and its implication of heat stress by using remote sensing and simulation tool. Sustainable Cities and Society, 2021, 65, 102632.	10.4	12
130	Electric vehicle's impacts on China's electricity load profiles based on driving patterns and demographics. Energy Reports, 2022, 8, 26-35.	5.1	12
131	Cooking in the sunshine. Nature, 1990, 348, 385-386.	27.8	11
132	The Post-Copenhagen Roadmap Towards Sustainability: Differentiated Geographic Approaches, Integrated Over Goals. Innovations, 2009, 4, 301-321.	3.4	11
133	Worker Exposure and Health Risks from Volatile Organic Compounds Utilized in the Paint Manufacturing Industry of Kenya. Journal of Occupational and Environmental Hygiene, 2001, 16, 1035-1042.	0.4	10
134	Design of domestic photovoltaics manufacturing systems under global constraints and uncertainty. Renewable Energy, 2020, 148, 1174-1189.	8.9	10
135	Characterization of the woody biomass feedstock potential resulting from California's drought. Scientific Reports, 2020, 10, 1096.	3.3	10
136	U.S.–China Collaboration is Vital to Global Plans for a Healthy Environment and Sustainable Development. Environmental Science & Technology, 2021, 55, 9622-9626.	10.0	10
137	Comparative study of box-type solar cookers in nicaragua. Solar & Wind Technology, 1990, 7, 463-471.	0.2	9
138	Energy Resources and Development in Vietnam. Annual Review of Environment and Resources, 1993, 18, 137-167.	1.2	9
139	Science, Society and the Environment. , 0, , .		9
140	Methodology for Monitoring Sustainable Development of Isolated Microgrids in Rural Communities. Sustainability, 2016, 8, 1163.	3.2	9
141	Review and Perspectives on Data Sharing and Privacy in Expanding Electricity Access. Proceedings of the IEEE, 2019, 107, 1803-1819.	21.3	9
142	Grid-scale energy storage. , 2020, , 119-143.		9
143	Mapping Opportunities for Transportation Electrification to Address Social Marginalization and Air Pollution Challenges in Greater Mexico City. Environmental Science & Technology, 2020, 54, 2103-2111.	10.0	9
144	The Role of Political Economy in Energy Access: Public and Private Off-Grid Electrification in Tanzania. Energies, 2021, 14, 3173.	3.1	9

#	Article	IF	CITATIONS
145	Energy efficiency as a unifying principle for human, environmental, and global health. F1000Research, 2013, 2, 101.	1.6	9
146	Orderly retire China's coal-fired power capacity via capacity payments to support renewable energy expansion. IScience, 2021, 24, 103287.	4.1	9
147	Carbon Calculations to Consider—Response. Science, 2010, 327, 781-781.	12.6	8
148	Data-Driven Approach for Analyzing Spatiotemporal Price Elasticities of EV Public Charging Demands Based on Conditional Random Fields. IEEE Transactions on Smart Grid, 2021, 12, 4363-4376.	9.0	8
149	Bioenergy: Counting on Incentives—Response. Science, 2010, 327, 1200-1201.	12.6	7
150	Mining Plastic: Harvesting Stored Energy in a Re-use Revolution. One Earth, 2019, 1, 392-394.	6.8	7
151	Electric vehicles. , 2020, , 145-163.		7
152	Leveraging Big Data and Coordinated Charging for Effective Taxi Fleet Electrification: The 100% EV Conversion of Shenzhen, China. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 10343-10353.	8.0	7
153	Sustainable energy and health. EcoHealth, 2000, 1, 78-87.	0.5	6
154	Sustaining the Last Rivers. American Scientist, 2019, 107, 302.	0.1	6
155	Financing Energy Efficiency. Scientific American, 2009, 19, 21-21.	1.0	5
156	The Role of Renewable Energy in Bridging the Electricity Gap in Africa. Current Sustainable/Renewable Energy Reports, 2018, 5, 205-213.	2.6	5
157	Cost and impact of weak medium term policies in the electricity system in Western North America. Electricity Journal, 2021, 34, 106925.	2.5	5
158	Impacts and savings of energy efficiency measures: A case for Mexico's electrical grid. Journal of Cleaner Production, 2022, 340, 130826.	9.3	5
159	Measuring the reliability of SDG 7: the reasons, timing, and fairness of outage distribution for household electricity access solutions. Environmental Research Communications, 2022, 4, 055001.	2.3	5
160	Optimizing the Design and Deployment of Stationary Combined Heat and Power Fuel Cell Systems for Minimum Costs and Emissions—Part I: Model Design. Journal of Fuel Cell Science and Technology, 2011, 8, .	0.8	4
161	Optimizing the Design and Deployment of Stationary Combined Heat and Power Fuel Cell Systems for Minimum Costs and Emissions—Part II: Model Results. Journal of Fuel Cell Science and Technology, 2011, 8, .	0.8	3
162	Testing of the Katrix rotary lobe expander for distributed concentrating solar combined heat and power systems. Energy Science and Engineering, 2014, 2, 61-76.	4.0	3

#	Article	IF	CITATIONS
163	Mundane is the New Radical: The Resurgence of Energy Megaprojects and Implications for the Global South [Opinion]. IEEE Technology and Society Magazine, 2018, 37, 18-26.	0.8	3
164	Energy access and sustainable development. AIP Conference Proceedings, 2015, , .	0.4	2
165	Energy Myth Eleven – Energy R&D Investment Takes Decades to Reach the Market. , 2007, , 289-309.		2
166	A Comparison of Regulatory Implications of Traditional and Exact Two-Stage Dose-Response Models. Risk Analysis, 1999, 19, 15-22.	2.7	1
167	Turning words into action on climate change. Carbon Management, 2013, 4, 139-142.	2.4	1
168	Reply to 'Emissions accounting for biomass energy with CCS'. Nature Climate Change, 2015, 5, 496-496.	18.8	1
169	Preface: Physics of Sustainable Energy III: Using Energy Efficiently and Producing it Renewably. AIP Conference Proceedings, 2015, , .	0.4	1
170	Solar energy innovation and Silicon Valley. , 2015, , .		1
171	A battery of innovative choices—if we commit to investing. Bulletin of the Atomic Scientists, 2018, 74, 7-10.	0.6	1
172	Over the hump: Have we reached the peak of carbon emissions?. Bulletin of the Atomic Scientists, 2020, 76, 256-262.	0.6	1
173	A community based approach to universal energy access. Electricity Journal, 2021, 34, 106921.	2.5	1
174	Defeating Energy Poverty: Invest in Scalable Solutions for the Poor. , 2020, , 333-347.		1
175	Title is missing!. Risk Analysis, 1999, 19, 15-22.	2.7	0
176	Solar Innovation and Market Feedback: Solar Photovoltaics in Rural Kenya. , 0, , 244-256.		0
177	Solar energy innovation and Silicon Valley. Bulletin of the Atomic Scientists, 2014, 70, 45-53.	0.6	0
178	The launch of Environmental Research Reviews. Environmental Research Letters, 2015, 10, 120402.	5.2	0
179	A window on use-inspired basic research. Environmental Research Letters, 2015, 10, 020201.	5.2	0
180	Minimizing cost uncertainty with a new methodology for use in policy making: China's electricity		0

pathways., 2016,,.

#	Article	IF	CITATIONS
181	Supporting Social and Gender Equity Through Micro-Grid Deployment in the DR Congo. , 2018, , .		Ο
182	Generation Expansion Analysis in Low Data Settings. , 2018, , .		0
183	Exploring rooftop solar photovoltaics deployment and energy injustice in the US through a data-driven approach. , 2021, , 109-128.		Ο
184	ENERGY AND WATER PERFORMANCE OF AN OFF-GRID TINY HOUSE IN CALIFORNIA. Journal of Green Building, 2021, 16, 111-134.	0.8	0
185	Open-Source Chinese Power System with High Spatial and Temporal Resolution. , 2022, , .		0