List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8610004/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Alkene Epoxidation and Thioether Oxidation with Hydrogen Peroxide Catalyzed by Mesoporous Zirconium-Silicates. Catalysts, 2022, 12, 742.	1.6	7
2	The Effects of Platinum Dispersion and Pt State on Catalytic Properties of Pt/Al ₂ O ₃ in NH ₃ Oxidation. ChemCatChem, 2021, 13, 313-327.	1.8	19
3	<i>In situ</i> probing of Pt/TiO ₂ activity in low-temperature ammonia oxidation. Catalysis Science and Technology, 2021, 11, 250-263.	2.1	26
4	Heterolytic alkene oxidation with H ₂ O ₂ catalyzed by Nb-substituted Lindqvist tungstates immobilized on carbon nanotubes. Catalysis Science and Technology, 2021, 11, 3198-3207.	2.1	11
5	Influence of a synthesis method and a support nature on physicochemical and catalytic properties of supported rhodium catalysts for the partial oxidation of hydrocarbons. I. Chloride series. Molecular Catalysis, 2021, 508, 111605.	1.0	1
6	CO oxidation activity of Pt/CeO2 catalysts below 0 °C: platinum loading effects. Applied Catalysis B: Environmental, 2021, 286, 119931.	10.8	83
7	Hydrogen Production through Autothermal Reforming of Ethanol: Enhancement of Ni Catalyst Performance via Promotion. Energies, 2021, 14, 5176.	1.6	14
8	Ni-N4 sites in a single-atom Ni catalyst on N-doped carbon for hydrogen production from formic acid. Journal of Catalysis, 2021, 402, 264-274.	3.1	41
9	H2O2-based selective oxidations by divanadium-substituted polyoxotungstate supported on nitrogen-doped carbon nanomaterials. Catalysis Today, 2020, 354, 196-203.	2.2	20
10	Insight into the Nature of Active Species of Pt/Al ₂ O ₃ Catalysts for low Temperature NH ₃ Oxidation. ChemCatChem, 2020, 12, 867-880.	1.8	38
11	Influence of Titania Synthesized by Pulsed Laser Ablation on the State of Platinum during Ammonia Oxidation. Applied Sciences (Switzerland), 2020, 10, 4699.	1.3	18
12	Peculiarities of Structure and Morphology of Copper-Cerium Nanopowders Produced by Laser Ablation. Russian Physics Journal, 2020, 63, 150-159.	0.2	2
13	The influence of the metal-support interaction on the catalytic activity of Pt/Al2O3 and Pt/TiO2 in NH3 oxidation. AIP Conference Proceedings, 2019, , .	0.3	5
14	From highly dispersed Rh3+ to nanoclusters and nanoparticles: Probing the low-temperature NO+CO activity of Rh-doped CeO2 catalysts. Applied Surface Science, 2019, 493, 1055-1066.	3.1	19
15	The State of Platinum and Structural Features of Pt/Al2O3 Catalysts in the Reaction of NH3 Oxidation. Journal of Structural Chemistry, 2019, 60, 919-931.	0.3	14
16	Synthesis of bimetallic AuPt/CeO2 catalysts and their comparative study in CO oxidation under different reaction conditions. Reaction Kinetics, Mechanisms and Catalysis, 2019, 127, 69-83.	0.8	16
17	Thermally Induced Structural Evolution of Palladium eria Catalysts. Implication for CO Oxidation. ChemCatChem, 2019, 11, 3505-3521.	1.8	26
18	Effects of the Carbon Support Doping with Nitrogen for the Hydrogen Production from Formic Acid over Ni Catalysts. Energies, 2019, 12, 4111.	1.6	20

#	Article	IF	CITATIONS
19	Nitrogen Doped Carbon Nanotubes and Nanofibers for Green Hydrogen Production: Similarities in the Nature of Nitrogen Species, Metal–Nitrogen Interaction, and Catalytic Properties. Energies, 2019, 12, 3976.	1.6	19
20	Carbon Nanotubes Modified by Venturello Complex as Highly Efficient Catalysts for Alkene and Thioethers Oxidation With Hydrogen Peroxide. Frontiers in Chemistry, 2019, 7, 858.	1.8	16
21	Structural Insight into Strong Pt–CeO ₂ Interaction: From Single Pt Atoms to PtO _{<i>x</i>} Clusters. Journal of Physical Chemistry C, 2019, 123, 1320-1334.	1.5	69
22	NiCuMo-SiO2 catalyst for pyrolysis oil upgrading: Model acidic treatment study. Applied Catalysis A: General, 2019, 573, 1-12.	2.2	22
23	Transformation of a Pt–CeO ₂ Mechanical Mixture of Pulsedâ€Laserâ€Ablated Nanoparticles to a Highly Active Catalyst for Carbon Monoxide Oxidation. ChemCatChem, 2018, 10, 2232-2247.	1.8	41
24	Highly Efficient Catalysts Based on Divanadium-Substituted Polyoxometalate and N-Doped Carbon Nanotubes for Selective Oxidation of Alkylphenols. ACS Catalysis, 2018, 8, 1297-1307.	5.5	72
25	Influence of the nitrogen-doped carbon nanofibers on the catalytic properties of supported metal and oxide nanoparticles. Catalysis Today, 2018, 301, 125-133.	2.2	21
26	The insights into chlorine doping effect on performance of ceria supported nickel catalysts for selective CO methanation. Applied Catalysis B: Environmental, 2018, 221, 413-421.	10.8	42
27	Spectroscopic study of nitrogen distribution in N-doped carbon nanotubes and nanofibers synthesized by catalytic ethylene-ammonia decomposition. Applied Surface Science, 2018, 435, 1273-1284.	3.1	30
28	The decomposition of mixed oxide Ag2Cu2O3: Structural features and the catalytic properties in CO and C2H4 oxidation. Applied Surface Science, 2018, 427, 363-374.	3.1	18
29	Structural and morphological properties of Ce1–x M x O y (M = Gd, La, Mg) supports for the catalysts of autothermal ethanol conversion. Journal of Structural Chemistry, 2017, 58, 126-134.	0.3	14
30	Catalytic steam cracking of heavy crude oil with molybdenum and nickel nanodispersed catalysts. Catalysis in Industry, 2017, 9, 221-229.	0.3	13
31	Effect of the support composition on the physicochemical properties of Ni/Ce1–x La x O y catalysts and their activity in an autothermal methane reforming reaction. Kinetics and Catalysis, 2017, 58, 610-621.	0.3	11
32	Redox and Catalytic Properties of RhxCe1–xO2â^î^ Solid Solution. Journal of Physical Chemistry C, 2017, 121, 26925-26938.	1.5	31
33	The structure and catalytic properties of Rh-doped CeO ₂ catalysts. Physical Chemistry Chemical Physics, 2017, 19, 31883-31897.	1.3	29
34	Nitrogen doped carbon nanotubes and nanofibers: Composition, structure, electrical conductivity and capacity properties. Carbon, 2017, 122, 475-483.	5.4	82
35	Evolution of the state of copper-based co-catalysts of the Cd0.3Zn0.7S photocatalyst at the photoproduction of hydrogen under action of visible light. International Journal of Hydrogen Energy, 2017, 42, 30067-30075.	3.8	8
36	Steam reforming of dimethoxymethane, methanol and dimethyl ether on CuO–ZnO/γ-Al2O3 catalyst. Kinetics and Catalysis, 2017, 58, 577-584.	0.3	13

#	Article	IF	CITATIONS
37	A study of the catalytic steam cracking of heavy crude oil in the presence of a dispersed molybdenum-containing catalyst. Petroleum Chemistry, 2017, 57, 618-629.	0.4	16
38	Investigating the process of heavy crude oil steam cracking in the presence of dispersed catalysts. II: Investigating the effect of Ni-containing catalyst concentration on the yield and properties of products. Catalysis in Industry, 2016, 8, 328-335.	0.3	10
39	Electrodeposited non-stoichiometric tungstic acid for electrochromic applications: film growth modes, crystal structure, redox behavior and stability. Applied Surface Science, 2016, 388, 786-793.	3.1	9
40	Observation of the superstructural diffraction peak in the nitrogen doped carbon nanotubes: Simulation of the structure. Fullerenes Nanotubes and Carbon Nanostructures, 2016, 24, 520-530.	1.0	22
41	Metal–support interaction in Pd/CeO ₂ model catalysts for CO oxidation: from pulsed laser-ablated nanoparticles to highly active state of the catalyst. Catalysis Science and Technology, 2016, 6, 6650-6666.	2.1	74
42	Highly active and durable Pd/Fe ₂ O ₃ catalysts for wet CO oxidation under ambient conditions. Catalysis Science and Technology, 2016, 6, 3918-3928.	2.1	25
43	Effect of Pd deposition procedure on activity of Pd/Ce0.5Sn0.5O2 catalysts for low-temperature CO oxidation. Catalysis Communications, 2016, 73, 34-38.	1.6	18
44	Physicochemical investigation of nanopowders prepared by laser ablation of crystalline silicon in water. Advanced Powder Technology, 2015, 26, 478-486.	2.0	15
45	Ultradisperse Pt nanoparticles anchored on defect sites in oxygen-free few-layer graphene and their catalytic properties in CO oxidation. Carbon, 2015, 89, 290-299.	5.4	37
46	Low-temperature CO oxidation by Pd/CeO2 catalysts synthesized using the coprecipitation method. Applied Catalysis B: Environmental, 2015, 166-167, 91-103.	10.8	167
47	Role of the support in the formation of the properties of a Pd/Al2O3 catalyst for the low-temperature oxidation of carbon monoxide. Kinetics and Catalysis, 2014, 55, 748-762.	0.3	6
48	Palladium Nanoparticles Supported on Nitrogenâ€Doped Carbon Nanofibers: Synthesis, Microstructure, Catalytic Properties, and Selfâ€Sustained Oscillation Phenomena in Carbon Monoxide Oxidation. ChemCatChem, 2014, 6, 2115-2128.	1.8	38
49	The local structure of Pd _x Ce _{1â^'x} O _{2â^'xâ^'δ} solid solutions. Physical Chemistry Chemical Physics, 2014, 16, 13523-13539.	1.3	84
50	Catalytic and capacity properties of nanocomposites based on cobalt oxide and nitrogen-doped carbon nanofibers. Chinese Journal of Catalysis, 2014, 35, 960-969.	6.9	13
51	Low-temperature oxidation of carbon monoxide over (Mn1 â^ x M x)O2 (M = Co, Pd) catalysts. Kinetics and Catalysis, 2013, 54, 81-94.	0.3	10
52	Synthesis and catalytic activity of porous blocked Ag/SiO2 composites in low-temperature carbon monoxide oxidation. Kinetics and Catalysis, 2013, 54, 492-496.	0.3	1
53	Direct CO2 capture from ambient air using K2CO3/Al2O3 composite sorbent. International Journal of Greenhouse Gas Control, 2013, 17, 332-340.	2.3	102
54	Study of cupric oxide nanopowders as efficient catalysts for low-temperature CO oxidation. Journal of Molecular Catalysis A, 2013, 368-369, 95-106.	4.8	68

#	Article	IF	CITATIONS
55	Deposition of silver nanoparticles into porous system of sol–gel silica monoliths and properties of silver/porous silica composites. Journal of Sol-Gel Science and Technology, 2013, 68, 471-478.	1.1	5
56	In Situ XRD, XPS, TEM, and TPR Study of Highly Active in CO Oxidation CuO Nanopowders. Journal of Physical Chemistry C, 2013, 117, 14588-14599.	1.5	186
57	Silver nanoparticles obtained by laser ablation as the active component of Ag/SiO2 catalysts for CO oxidation. Reaction Kinetics, Mechanisms and Catalysis, 2013, 110, 343-357.	0.8	9
58	Self-sustained oscillations in CO oxidation reaction on PdO/Al2O3 catalyst. Chemical Engineering Science, 2012, 83, 149-158.	1.9	27
59	Steam reforming of methane over Ni-substituted Sr hexaaluminates. Catalysis for Sustainable Energy, 2012, 1, .	0.7	3
60	Effect of surfactants on the structure and texture characteristics of aluminum oxide. Kinetics and Catalysis, 2012, 53, 440-448.	0.3	2
61	Pd/Fiber glass and Pd/5% γ-Al2O3/Fiber glass catalysts by surface self-propagating thermal synthesis. International Journal of Self-Propagating High-Temperature Synthesis, 2012, 21, 139-145.	0.2	10
62	Low-temperature oxidation of carbon monoxide on Pd(Pt)/CeO2 catalysts prepared from complex salts. Kinetics and Catalysis, 2011, 52, 282-295.	0.3	17
63	Structural and chemical states of palladium in Pd/Al2O3 catalysts under self-sustained oscillations in reaction of CO oxidation. Applied Catalysis A: General, 2011, 401, 83-97.	2.2	60
64	Metal–support interactions in Pt/Al2O3 and Pd/Al2O3 catalysts for CO oxidation. Applied Catalysis B: Environmental, 2010, 97, 57-71.	10.8	343