Vladimir Mokhov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8609772/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis and Properties of N,N′-Disubstituted Ureas and Their Isosteric Analogs Containing Polycyclic Fragments: XIV. N-[(Adamantan-1-yl)(phenyl)methyl]-N′-substituted Ureas and Symmetrical Bis-ureas. Russian Journal of Organic Chemistry, 2022, 58, 259-267.	0.3	2
2	ALKYLATION OF 2-AMINOADAMANTANE WITH ALKANOLS USING CATALYSIS BY COLLOIDAL NICKEL PARTICLES. Izvestia Volgograd State Technical University, 2021, , 53-56.	0.0	0
3	Chemical Transformations of Tetracyclo[3.3.1.13,7.01,3]decane (1,3-Dehydroadamantane): IX. Noncatalytic Reactions with Alkylarenes. Russian Journal of Organic Chemistry, 2020, 56, 1041-1045.	0.3	2
4	Chemical Transformations of Tetracyclo[3.3.1.1.3,7.0.1,3]decane (1,3-Dehydroadamantane): VIII. Reaction of 1,3-Dehydroadamantane with Aliphatic Aldehydes. Russian Journal of Organic Chemistry, 2019, 55, 640-645.	0.3	3
5	Colloid and Nanosized Catalysts in Organic Synthesis: XXI. Reduction of Nitroarenes Catalyzed by Immobilized Nickel Nanoparticles. Russian Journal of General Chemistry, 2019, 89, 1549-1553.	0.3	4
6	Colloidal and Nanosized Catalysts in Organic Synthesis: XXIII. Reductive Amination of Carbonyl Compounds Catalyzed by Nickel Nanoparticles in a Plug-Flow Reactor. Russian Journal of General Chemistry, 2019, 89, 2333-2340.	0.3	4
7	Colloid and Nanosized Catalysts in Organic Synthesis: XXII. Hydrogenation of Cycloolefins Catalyzed by Immobilized Transition Metals Nanoparticles in a Three-Phase System. Russian Journal of General Chemistry, 2019, 89, 1985-1989.	0.3	3
8	Chemical Transformations of Tetracyclo[3.3.1.13,7.01,3]decane (1,3-Dehydroadamantane): VII. Reaction of 1,3-Dehydroadamantane with Alkanediols and Amino Alcohols. Russian Journal of Organic Chemistry, 2018, 54, 1760-1763.	0.3	5
9	Colloidal and Nanosized Catalysts in Organic Synthesis: XX. Continuous Hydrogenation of Imines and Enamines Catalyzed by Nickel Nanoparticles. Russian Journal of General Chemistry, 2018, 88, 2035-2038.	0.3	6
10	Chemical Transformations of Tetracyclo[3.3.1.13,7.01,3]decane (1,3-Dehydroadamantane): VI. Reactions of 1,3-Dehydroadamantane with Carboxylic Acid Chlorides. Russian Journal of Organic Chemistry, 2018, 54, 840-843.	0.3	2
11	Chemical transformations of tetracyclo[3.3.1.13,7.01,3]decane (1,3-dehydroadamantane): IV. Reaction of 1,3-dehydroadamantane with dicarboxylic acids esters. Russian Journal of Organic Chemistry, 2017, 53, 160-162.	0.3	2
12	Chemical transformations of tetracyclo[3.3.1.13,7.01,3]decane (1,3-dehydroadamantane): II. Reaction of 1,3-dehydroadamantane with N,N-dialkylcarboxamides. Russian Journal of Organic Chemistry, 2017, 53, 6-8.	0.3	6
13	Chemical transformations of tetracyclo[3.3.1.1.3,7.0.1,3]decane (1,3-dehydroadamantane): V. Reactions of 1,3-dehydroadamantane with esters of α-halogen-containing carboxylic acids. Russian Journal of Organic Chemistry, 2017, 53, 1180-1185.	0.3	2
14	Colloid and Nanosized Catalysts in Organic Synthesis: XVIII.1 Disproportionation and Cross-Coupling of Amines During Catalysis with Immobilized Nickel Nanoparticles. Russian Journal of General Chemistry, 2017, 87, 2757-2761.	0.3	4
15	Colloidal and nanosized catalysts in organic synthesis: XV. Gas-phase hydrogenation of alkenes catalyzed by supported nickel nanoparticles. Russian Journal of General Chemistry, 2016, 86, 2589-2593.	0.3	6
16	Colloid and nanosized catalysts in organic synthesis: XII. Hydrogenation of carbonitriles catalyzed by nickel nanoparticles. Russian Journal of General Chemistry, 2016, 86, 273-280.	0.3	9
17	Colloid and nanosized catalysts in organic synthesis: XIII. Synthesis of 2-R-2-imidazolines catalyzed by copper and iron oxide nanoparticles. Russian Journal of General Chemistry, 2016, 86, 281-285.	0.3	3
18	Hydrogenation of alkenes over nickel nanoparticles under atmospheric pressure of hydrogen. Russian Journal of Organic Chemistry, 2016, 52, 319-323.	0.3	6

#	Article	IF	CITATIONS
19	Chemical transformations of tetracyclo[3.3.1.1.3,7.0.1,3]decane (1,3-dehydroadamantane): I. Reaction of 1,3-dehydroadamantane with carboxylic acids esters. Russian Journal of Organic Chemistry, 2016, 52, 1118-1120.	0.3	8
20	Colloid and nanosized catalysts in organic synthesis: XIV. Reductive amination and amidation of carbonitriles catalyzed by nickel nanoparticles. Russian Journal of General Chemistry, 2016, 86, 798-805.	0.3	2
21	Colloid and nanosized catalysts in organic synthesis: XI. Hydrogenation of alkynes catalyzed by nickel nanoparticles. Russian Journal of General Chemistry, 2016, 86, 43-45.	0.3	1
22	Colloid and nano-sized catalysts in organic synthesis: X. Synthesis of carboxamides by direct amidation of carboxylic acids and transamidation catalyzed by colloid copper. Russian Journal of General Chemistry, 2015, 85, 820-826.	0.3	3
23	Reactions of 1,3-dehydroadamantane with inorganic oxygen-free acids. Russian Journal of Organic Chemistry, 2014, 50, 1276-1278.	0.3	10
24	Colloid and nanosized catalysts in organic synthesis: V. Reactions of alkyl halides and alcohols with β-diketones in the presence of metal nanoparticles. Russian Journal of General Chemistry, 2014, 84, 1491-1495.	0.3	1
25	Adamantylation of carbonitriles with 1,3-dehydroadamantane and its homologs. Russian Journal of Organic Chemistry, 2014, 50, 1279-1282.	0.3	4
26	Colloid and nanodimensional catalysts in organic synthesis: VI. Hydrogenation and hydrogenolysis of carbonyl compounds. Russian Journal of General Chemistry, 2014, 84, 1656-1661.	0.3	8
27	Colloid and nanodimensional catalysts in organic synthesis: VIII. Hydrogenation of C=N bond with hydrogen in the presence of colloid nickel. Russian Journal of General Chemistry, 2014, 84, 1921-1923.	0.3	3
28	Colloid and nanosized catalysts in organic synthesis: IX. Hydrogenation of enamines with hydrogen at atmospheric pressure. Russian Journal of General Chemistry, 2014, 84, 2073-2075.	0.3	5
29	Transamination of α-amino nitriles. Russian Journal of Organic Chemistry, 2014, 50, 21-24.	0.3	2
30	Colloid and nanodimensional catalysts in organic synthesis: I. Investigation of hydrogenation selectivity of unsaturated compounds with hydrazine hydrate and aluminum hydride. Russian Journal of General Chemistry, 2014, 84, 444-448.	0.3	7
31	Colloid and nanosize catalysts in organic synthesis: VII. Catalysis with copper colloid particles in Leucart-Wallach reaction. Russian Journal of General Chemistry, 2014, 84, 1915-1920.	0.3	4
32	Reductive decyanation of 2-(dialkylamino)adamantane-2-carbonitriles. Russian Journal of Organic Chemistry, 2014, 50, 1056-1057.	0.3	2
33	Colloid and nanosized catalysts in organic synthesis: IV. Reduction of nitroarenes with hydrazine hydrate catalyzed with metal nanoparticles. Russian Journal of General Chemistry, 2014, 84, 1515-1518.	0.3	9
34	Colloid and nanodimensional catalysts in organic synthesis: II. The hydrogenation of alkenes with hydrogen at atmospheric pressure. Russian Journal of General Chemistry, 2014, 84, 622-628.	0.3	12
35	Colloid and nanodimensional catalysts in organic synthesis: III. Alkylation of amines with primary alcohols catalyzed by colloidal nickel and cobalt. Russian Journal of General Chemistry, 2014, 84, 826-830.	0.3	8
36	Adamantylation of saturated nitrogen-containing heterocycles. Russian Journal of Organic Chemistry, 2014, 50, 447-448.	0.3	9

VLADIMIR MOKHOV

#	Article	IF	CITATIONS
37	Synthesis of 2-hydroxy-2-carboxyalkyladamantanes. Russian Journal of General Chemistry, 2013, 83, 1170-1171.	0.3	2
38	Reaction of 1,3-dehydroadamantane with dicarboxylic acid imides. Russian Journal of Organic Chemistry, 2013, 49, 1403-1404.	0.3	6
39	Alkylation of saturated nitrogen-containing heterocycles with 1-bromo-4-oxoadamantane. Russian Journal of Applied Chemistry, 2013, 86, 1088-1089.	0.1	Ο
40	Synthesis of adamantyl-containing spirooxazines and spirooxazolidines. Russian Journal of General Chemistry, 2013, 83, 2350-2351.	0.3	1
41	Synthesis of spiro[adamantane-2,2′-oxiranes] using lithium bis(trimethylsilyl)amide. Russian Journal of Organic Chemistry, 2013, 49, 1401-1402.	0.3	1
42	One-stage synthesis of adamantyl-containing α-aminonitriles. Russian Journal of Organic Chemistry, 2013, 49, 1135-1138.	0.3	3
43	Reactions of 2-(N,N-dialkyl)amino-2-adamantylcarbonitriles with Grignard reagents. Russian Journal of General Chemistry, 2013, 83, 1955-1956.	0.3	0
44	Condensation of adamantanone with methylene-active compounds. Russian Journal of Applied Chemistry, 2013, 86, 404-409.	0.1	9
45	Reactions of 1,3-dehydroadamantane with some aromatic disulfides. Russian Journal of General Chemistry, 2012, 82, 1183-1184.	0.3	1
46	Synthesis of 2-amino-2-cyanoadamantane and its derivatives. Russian Journal of Applied Chemistry, 2012, 85, 1387-1394.	0.1	4
47	Adamantylation of azoles with 1,3-dehydroadamantane. Selective N-adamantylation of pyrazoles. Russian Journal of Organic Chemistry, 2011, 47, 150-151.	0.3	6
48	Reaction of [3.3.1]propellanes with diaryl diselenides. Russian Journal of Organic Chemistry, 2010, 46, 929-930.	0.3	2
49	Synthesis of 4-(1-adamantyl)-3-polyfluoromethyl-1H-pyrazoles. Russian Journal of Organic Chemistry, 2010, 46, 1178-1180.	0.3	1
50	Method of synthesizing adamantyl-substituted phenols based on 1,3-dehydroadamantane. Russian Journal of Applied Chemistry, 2009, 82, 691-692.	0.1	5
51	Uncommon alkylation by 1,3-dehydroadamantane of polycyclic hydrocarbons. Russian Journal of Organic Chemistry, 2009, 45, 1721-1722.	0.3	3
52	Adamantylation of azoles by 1,3-dehydroadamantane: I. N-adamantylation of imidazoles by 1,3-dehydroadamantane. Russian Journal of Organic Chemistry, 2009, 45, 1732-1733.	0.3	8
53	Reaction of 1,3-dehydroadamantane with camphor and isocamphanone. Russian Journal of Organic Chemistry, 2009, 45, 1864-1865.	0.3	4
54	Adamantyl-containing fluorinated 1,3-diketones. Russian Journal of Organic Chemistry, 2008, 44, 1157-1160.	0.3	12

Vladimir Mokhov

#	Article	IF	CITATIONS
55	Uncommon reaction of 1,3-dehydroadamantane with 3-bromo-1,7,7-trimethylbicyclo[2.2.1]heptan-2-one. Russian Journal of Organic Chemistry, 2007, 43, 1254-1255.	0.3	1
56	Preparation of Adamantyl-Substituted Amino Acids Lactams ChemInform, 2005, 36, no.	0.1	0
57	Synthesis of Adamantyl-Substituted Keto Esters. ChemInform, 2004, 35, no.	0.1	Ο
58	Preparation of Adamantyl-substituted Amino Acids Lactams. Russian Journal of Organic Chemistry, 2003, 39, 1193-1194.	0.3	4
59	Synthesis of Adamantyl-substituted Keto Esters. Russian Journal of Organic Chemistry, 2003, 39, 1668-1669.	0.3	14
60	Synthesis of Adamantyl-Containing Cyclic β-Diketones (III) ChemInform, 2003, 34, no.	0.1	0
61	Preparation of α-Adamantyl-substituted Aliphatic Ketones. Russian Journal of Organic Chemistry, 2002, 38, 295-296.	0.3	13
62	Synthesis of Adamantyl-Containing Cyclic β-Diketones. Russian Journal of Organic Chemistry, 2002, 38, 1377-1377.	0.3	10