
## Armando Carlone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8609522/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                          | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Asymmetric Aminocatalysis—Gold Rush in Organic Chemistry. Angewandte Chemie - International<br>Edition, 2008, 47, 6138-6171.                                                                                     | 7.2  | 1,175     |
| 2  | An autonomous chemically fuelled small-molecule motor. Nature, 2016, 534, 235-240.                                                                                                                               | 13.7 | 370       |
| 3  | Organocatalytic Asymmetric Friedelâ^'Crafts Alkylation of Indoles with Simple α,β-Unsaturated Ketones.<br>Organic Letters, 2007, 9, 1403-1405.                                                                   | 2.4  | 300       |
| 4  | A New Approach for an Organocatalytic Multicomponent Domino Asymmetric Reaction. Angewandte<br>Chemie - International Edition, 2007, 46, 1101-1104.                                                              | 7.2  | 245       |
| 5  | A Rotaxaneâ€Based Switchable Organocatalyst. Angewandte Chemie - International Edition, 2012, 51, 5166-5169.                                                                                                     | 7.2  | 232       |
| 6  | A simple asymmetric organocatalytic approach to optically active cyclohexenones. Chemical Communications, 2006, , 4928-4930.                                                                                     | 2.2  | 204       |
| 7  | Organocatalytic Asymmetric Hydrophosphination of α,β-Unsaturated Aldehydes. Angewandte Chemie -<br>International Edition, 2007, 46, 4504-4506.                                                                   | 7.2  | 164       |
| 8  | Organocatalytic Asymmetric Conjugate Addition of 1,3-Dicarbonyl Compounds to Maleimides.<br>Angewandte Chemie - International Edition, 2006, 45, 4966-4970.                                                      | 7.2  | 147       |
| 9  | Organocatalytic Asymmetric Sulfaâ€Michael Addition to α,βâ€Unsaturated Ketones. Advanced Synthesis and<br>Catalysis, 2008, 350, 49-53.                                                                           | 2.1  | 145       |
| 10 | Asymmetric Aminolysis of Aromatic Epoxides:  A Facile Catalytic Enantioselective Synthesis<br>ofanti-β-Amino Alcohols. Organic Letters, 2004, 6, 2173-2176.                                                      | 2.4  | 116       |
| 11 | A Three-Compartment Chemically-Driven Molecular Information Ratchet. Journal of the American<br>Chemical Society, 2012, 134, 8321-8323.                                                                          | 6.6  | 115       |
| 12 | Quaternary Stereogenic Carbon Atoms in Complex Molecules by an Asymmetric, Organocatalytic,<br>Triple ascade Reaction. Chemistry - A European Journal, 2008, 14, 4788-4791.                                      | 1.7  | 104       |
| 13 | Organocatalytic Asymmetric α‣elenenylation of Aldehydes. Angewandte Chemie - International Edition,<br>2007, 46, 6882-6885.                                                                                      | 7.2  | 99        |
| 14 | Aminocatalytic Enantioselective <i>antiâ€</i> Mannich Reaction of Aldehydes with Inâ€Situ Generated<br><i>N</i> â€Cbz and <i>N</i> â€Boc Imines. Angewandte Chemie - International Edition, 2008, 47, 8700-8702. | 7.2  | 98        |
| 15 | Organocatalytic asymmetric hydrophosphination of nitroalkenes. Chemical Communications, 2007, , 722-724.                                                                                                         | 2.2  | 93        |
| 16 | Organocatalytic Asymmetric α-Halogenation of 1,3-Dicarbonyl Compounds. Angewandte Chemie -<br>International Edition, 2005, 44, 6219-6222.                                                                        | 7.2  | 91        |
| 17 | Asymmetric Catalytic Synthesis of EnantiopureN-Protected 1,2-Amino Alcohols. Organic Letters, 2004,<br>6, 3973-3975.                                                                                             | 2.4  | 89        |
| 18 | Organocatalytic Asymmetric βâ€Hydroxylation of α,βâ€Unsaturated Ketones. European Journal of Organic<br>Chemistry, 2007, 2007, 5492-5495.                                                                        | 1.2  | 79        |

ARMANDO CARLONE

| #  | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Magnesium perchlorate as efficient Lewis acid for the Knoevenagel condensation between β-diketones<br>and aldehydes. Tetrahedron Letters, 2008, 49, 2555-2557.                                                                          | 0.7 | 79        |
| 20 | Reaction of Dicarbonates with Carboxylic Acids Catalyzed by Weak Lewis Acids: General Method for the Synthesis of Anhydrides and Esters. Synthesis, 2007, 2007, 3489-3496.                                                              | 1.2 | 57        |
| 21 | Direct Catalytic Synthesis of Enantiopure 5-Substituted Oxazolidinones from Racemic Terminal Epoxides. Organic Letters, 2005, 7, 1983-1985.                                                                                             | 2.4 | 53        |
| 22 | Alcohols and Di-tert-butyl Dicarbonate:Â How the Nature of the Lewis Acid Catalyst May Address the<br>Reaction to the Synthesis oftert-Butyl Ethers. Journal of Organic Chemistry, 2006, 71, 9580-9588.                                 | 1.7 | 44        |
| 23 | A Small Molecule that Walks Nonâ€Directionally Along a Track Without External Intervention.<br>Angewandte Chemie - International Edition, 2012, 51, 5480-5483.                                                                          | 7.2 | 43        |
| 24 | tert-Butyl Ethers: Renaissance of an Alcohol Protecting Group. Facile Cleavage with Cerium(III)<br>Chloride/Sodium Iodide. Advanced Synthesis and Catalysis, 2006, 348, 905-910.                                                        | 2.1 | 32        |
| 25 | Organocatalysis and Beyond: Activating Reactions with Two Catalytic Species. Catalysts, 2019, 9, 928.                                                                                                                                   | 1.6 | 26        |
| 26 | Boron-Based Lewis Acid Catalysis: Challenges and Perspectives. Catalysts, 2022, 12, 5.                                                                                                                                                  | 1.6 | 26        |
| 27 | The First Simple Method of Protection of Hydroxy Compounds as their O-Boc Derivatives under Lewis<br>Acid Catalysis. Synlett, 2006, 2006, 2104-2108.                                                                                    | 1.0 | 22        |
| 28 | Kinetic Resolution of Oxazinones: Rational Exploration of Chemical Space through the Design of Experiments. Chemistry - A European Journal, 2014, 20, 11768-11775.                                                                      | 1.7 | 21        |
| 29 | Advancements in the recycling of organocatalysts: From classical to alternative approaches. Current Opinion in Green and Sustainable Chemistry, 2020, 25, 100387.                                                                       | 3.2 | 19        |
| 30 | A New, Mild, General and Efficient Route to Aryl Ethyl Carbonates in Solvent-Free Conditions<br>Promoted by Magnesium Perchlorate. European Journal of Organic Chemistry, 2006, 2006, 4429-4434.                                        | 1.2 | 18        |
| 31 | Enantioselective organocatalytic approaches to active pharmaceutical ingredients – selected<br>industrial examples. Physical Sciences Reviews, 2019, 4, .                                                                               | 0.8 | 16        |
| 32 | Organocatalytic Asymmetric Conjugate Additions to Cyclopentâ€lâ€enecarbaldehyde: A Critical<br>Assessment of Organocatalytic Approaches towards the Telaprevir Bicyclic Core. Chemistry - A<br>European Journal, 2015, 21, 19208-19222. | 1.7 | 15        |
| 33 | NMR relaxation time measurements of solvent effects in an organocatalysed asymmetric aldol reaction over silica SBA-15 supported proline. Reaction Chemistry and Engineering, 2022, 7, 269-274.                                         | 1.9 | 14        |
| 34 | Iridium(III) Complexes with Fluorinated Phenyl-tetrazoles as Cyclometalating Ligands: Enhanced<br>Excited-State Energy and Blue Emission. Inorganic Chemistry, 2020, 59, 16238-16250.                                                   | 1.9 | 12        |
| 35 | Influence of structurally related micelle forming surfactants on the antioxidant activity of natural substances. Chemistry and Physics of Lipids, 2019, 225, 104818.                                                                    | 1.5 | 10        |
| 36 | Magnesium Perchlorate as Efficient Lewis Acid: A Simple and Convenient Route to 1,4-Dihydropyridines.<br>Synlett, 2007, 2007, 2897-2901.                                                                                                | 1.0 | 9         |

ARMANDO CARLONE

| #  | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Asymmetric Organocatalysis and Continuous Chemistry for an Efficient and Cost-Competitive Process to Pregabalin. Organic Process Research and Development, 2021, 25, 2795-2805.                                       | 1.3 | 9         |
| 38 | Triarylborane catalysed <i>N</i> -alkylation of amines with aryl esters. Catalysis Science and Technology, 2020, 10, 7523-7530.                                                                                       | 2.1 | 8         |
| 39 | DoEâ€Ðriven Development of an Organocatalytic Enantioselective Addition of Acetaldehyde to<br>Nitrostyrenes in Water**. Chemistry - A European Journal, 2022, , .                                                     | 1.7 | 7         |
| 40 | Organocatalyzed Michael Addition to Nitroalkenes via Masked Acetaldehyde. Catalysts, 2020, 10, 1296.                                                                                                                  | 1.6 | 6         |
| 41 | Asymmetric Organocatalysis Accelerated via Selfâ€Assembled Minimal Structures. European Journal of<br>Organic Chemistry, 2021, 2021, 5403-5406.                                                                       | 1.2 | 6         |
| 42 | Insights into Substituent Effects of Benzaldehyde Derivatives in a Heterogeneous Organocatalyzed<br>Aldol Reaction. ChemCatChem, 2022, 14, .                                                                          | 1.8 | 6         |
| 43 | Palladium-catalyzed regio- and stereoselective synthesis of aryl and 3-indolyl-substituted<br>4-methylene-3,4-dihydroisoquinolin-1( <i>2H</i> )-ones. Beilstein Journal of Organic Chemistry, 2020, 16,<br>1084-1091. | 1.3 | 5         |
| 44 | Impact of Design of Experiments in the Optimisation of Catalytic Reactions in Academia. Synthesis, 2022, 54, 4246-4256.                                                                                               | 1.2 | 4         |
| 45 | Turning renewable feedstocks into a valuable and efficient punctually chiral phosphate salt catalyst.<br>Asian Journal of Organic Chemistry, 0, , .                                                                   | 1.3 | 2         |
| 46 | Polycationic Rh–JosiPhos Polymers Supported on Phosphotungstic<br>Acid/Al <sub>2</sub> O <sub>3</sub> by Multiple Electrostatic Attractions. ACS Catalysis, 2022, 12,<br>2034-2044.                                   | 5.5 | 2         |
| 47 | Diverse exploitation of BrÃ,nsted acid catalysts – paving the way for simple access to enantioenriched<br>amines. Organic Chemistry Frontiers, 2017, 4, 1651-1654.                                                    | 2.3 | 1         |
| 48 | Asymmetric Aminolysis of Aromatic Epoxides: A Facile Catalytic Enantioselective Synthesis of anti-β-Amino Alcohols ChemInform, 2004, 35, no.                                                                          | 0.1 | 0         |
| 49 | Asymmetric Catalytic Synthesis of Enantiopure N-Protected 1,2-Amino Alcohols ChemInform, 2005, 36, no.                                                                                                                | 0.1 | 0         |
| 50 | Direct Catalytic Synthesis of Enantiopure 5-Substituted Oxazolidinones from Racemic Terminal Epoxides ChemInform, 2005, 36, no.                                                                                       | 0.1 | 0         |
| 51 | Organocatalytic Asymmetric α-Halogenation of 1,3-Dicarbonyl Compounds ChemInform, 2006, 37, no.                                                                                                                       | 0.1 | 0         |
| 52 | Organocatalytic Asymmetric α-Halogenation of 1,3-Dicarbonyl Compounds. Angewandte Chemie -<br>International Edition, 2006, 45, 340-340.                                                                               | 7.2 | 0         |
| 53 | Inside Back Cover: A Small Molecule that Walks Non-Directionally Along a Track Without External<br>Intervention (Angew. Chem. Int. Ed. 22/2012). Angewandte Chemie - International Edition, 2012, 51,<br>5505-5505.   | 7.2 | 0         |