
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8609281/publications.pdf

Version: 2024-02-01

RRUNO LOCATEUL

#	Article	IF	CITATIONS
1	Trees, forests and water: Cool insights for a hot world. Global Environmental Change, 2017, 43, 51-61.	3.6	660
2	Major atmospheric emissions from peat fires in Southeast Asia during non-drought years: evidence from the 2013 Sumatran fires. Scientific Reports, 2014, 4, 6112.	1.6	258
3	Soil erosion in the humid tropics: A systematic quantitative review. Agriculture, Ecosystems and Environment, 2015, 203, 127-139.	2.5	230
4	Multi-level governance and power in climate change policy networks. Global Environmental Change, 2019, 54, 64-77.	3.6	208
5	Key knowledge gaps to achieve global sustainability goals. Nature Sustainability, 2019, 2, 1115-1121.	11.5	193
6	Ecosystem-based adaptation to climate change: what role for policy-makers, society and scientists?. Mitigation and Adaptation Strategies for Global Change, 2009, 14, 691-696.	1.0	190
7	Beyond dichotomies: Gender and intersecting inequalities in climate change studies. Ambio, 2016, 45, 248-262.	2.8	175
8	Forests and Climate Change in Latin America: Linking Adaptation and Mitigation. Forests, 2011, 2, 431-450.	0.9	138
9	An integrative research framework for enabling transformative adaptation. Environmental Science and Policy, 2017, 68, 87-96.	2.4	136
10	Tropical reforestation and climate change: beyond carbon. Restoration Ecology, 2015, 23, 337-343.	1.4	127
11	Relationships Between Ecosystem Services: Comparing Methods for Assessing Tradeoffs and Synergies. Ecological Economics, 2018, 150, 96-106.	2.9	122
12	Climate policy integration in the land use sector: Mitigation, adaptation and sustainable development linkages. Environmental Science and Policy, 2017, 67, 35-43.	2.4	121
13	Characteristic trajectories of ecosystem services in mountains. Frontiers in Ecology and the Environment, 2017, 15, 150-159.	1.9	115
14	Mitigation needs adaptation: Tropical forestry and climate change. Mitigation and Adaptation Strategies for Global Change, 2008, 13, 793-808.	1.0	113
15	Forests and trees for social adaptation to climate variability and change. Wiley Interdisciplinary Reviews: Climate Change, 2012, 3, 581-596.	3.6	113
16	Integrating climate change mitigation and adaptation in agriculture and forestry: opportunities and tradeâ€offs. Wiley Interdisciplinary Reviews: Climate Change, 2015, 6, 585-598.	3.6	102
17	Interconnected place-based social–ecological research can inform global sustainability. Current Opinion in Environmental Sustainability, 2017, 29, 1-7.	3.1	102
18	Nature's contributions to people in mountains: A review. PLoS ONE, 2019, 14, e0217847.	1.1	94

#	Article	IF	CITATIONS
19	Rise and fall of forest loss and industrial plantations in Borneo (2000–2017). Conservation Letters, 2019, 12, e12622.	2.8	91
20	Impacts of payments for environmental services on local development in northern Costa Rica: A fuzzy multi-criteria analysis. Forest Policy and Economics, 2008, 10, 275-285.	1.5	87
21	Synergies and trade-offs between ecosystem services in Costa Rica. Environmental Conservation, 2014, 41, 27-36.	0.7	87
22	Impacts of forests and forestation on hydrological services in the Andes: A systematic review. Forest Ecology and Management, 2019, 433, 569-584.	1.4	87
23	Mechanisms mediating the contribution of ecosystem services to human well-being and resilience. Ecosystem Services, 2017, 28, 43-54.	2.3	77
24	Managing watershed services of tropical forests and plantations: Can meta-analyses help?. Forest Ecology and Management, 2009, 258, 1864-1870.	1.4	73
25	Local Perceptions of Climate Variability and Change in Tropical Forests of Papua, Indonesia. Ecology and Society, 2013, 18, .	1.0	67
26	Assessing nature-based solutions for transformative change. One Earth, 2021, 4, 730-741.	3.6	66
27	Mustering the power of ecosystems for adaptation to climate change. Environmental Science and Policy, 2019, 92, 87-97.	2.4	65
28	Ecosystem services in the National Adaptation Programmes of Action. Climate Policy, 2012, 12, 393-409.	2.6	64
29	A novel telecoupling framework to assess social relations across spatial scales for ecosystem services research. Journal of Environmental Management, 2019, 241, 251-263.	3.8	63
30	Once there was a lake: vulnerability to environmental changes in northern Mali. Regional Environmental Change, 2013, 13, 493-508.	1.4	61
31	Fire activity in Borneo driven by industrial land conversion and drought during El Niño periods, 1982–2010. Global Environmental Change, 2017, 47, 95-109.	3.6	59
32	Co-producing ecosystem services for adapting to climate change. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190119.	1.8	59
33	Coupling of pollination services and coffee suitability under climate change. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10438-10442.	3.3	58
34	Impacts of drought and responses of rural populations in West Africa: a systematic review. Wiley Interdisciplinary Reviews: Climate Change, 2016, 7, 666-681.	3.6	57
35	Envisioning the future and learning from the past: Adapting to a changing environment in northern Mali. Environmental Science and Policy, 2013, 25, 94-106.	2.4	55
36	Adapting transformation and transforming adaptation to climate change using a pathways approach. Environmental Science and Policy, 2021, 124, 163-174.	2.4	51

#	Article	IF	CITATIONS
37	Modeling Potential Equilibrium States of Vegetation and Terrestrial Water Cycle of Mesoamerica under Climate Change Scenarios*. Journal of Hydrometeorology, 2012, 13, 665-680.	0.7	47
38	Addressing Climate Change Mitigation and Adaptation Together: A Global Assessment of Agriculture and Forestry Projects. Environmental Management, 2016, 57, 271-282.	1.2	45
39	Reducing risks by transforming landscapes: Cross-scale effects of land-use changes on ecosystem services. PLoS ONE, 2018, 13, e0195895.	1.1	44
40	Forests and climate change adaptation policies in Cameroon. Mitigation and Adaptation Strategies for Global Change, 2011, 16, 369-385.	1.0	43
41	Integration of Adaptation and Mitigation in Climate Change and Forest Policies in Indonesia and Vietnam. Forests, 2014, 5, 2016-2036.	0.9	42
42	Slowing deforestation in Indonesia follows declining oil palm expansion and lower oil prices. PLoS ONE, 2022, 17, e0266178.	1.1	42
43	Research Priorities for the Conservation and Sustainable Governance of Andean Forest Landscapes. Mountain Research and Development, 2017, 37, 323.	0.4	41
44	Linking equity, power, and stakeholders' roles in relation to ecosystem services. Ecology and Society, 2019, 24, .	1.0	37
45	Nature's contributions to people: coproducing quality of life from multifunctional landscapes. Ecology and Society, 2021, 26, .	1.0	36
46	Ecosystem-based adaptation to climate change: What scope for payments for environmental services?. Climate and Development, 2011, 3, 143-158.	2.2	33
47	Ecosystem Services and Biodiversity in a Rapidly Transforming Landscape in Northern Borneo. PLoS ONE, 2015, 10, e0140423.	1.1	29
48	Ecosystem services and hydroelectricity in Central America: modelling service flows with fuzzy logic and expert knowledge. Regional Environmental Change, 2011, 11, 393-404.	1.4	28
49	Wild Foods: Safety Net or Poverty Trap? A South African Case Study. Human Ecology, 2018, 46, 183-195.	0.7	28
50	Power asymmetries in social networks of ecosystem services governance. Environmental Science and Policy, 2020, 114, 329-340.	2.4	26
51	Forest loss in Indonesian New Guinea (2001–2019): Trends, drivers and outlook. Biological Conservation, 2021, 261, 109225.	1.9	22
52	Synergies between adaptation and mitigation in climate change finance. International Journal of Climate Change Strategies and Management, 2016, 8, 112-128.	1.5	21
53	Adapting tropical production forests to global climate change: risk perceptions and actions. International Forestry Review, 2012, 14, 27-38.	0.3	20
54	Climate change and plant dispersal along corridors in fragmented landscapes of Mesoamerica. Ecology and Evolution, 2013, 3, 2917-2932.	0.8	20

#	Article	IF	CITATIONS
55	Climatology-based regional modelling of potential vegetation and average annual long-term runoff for Mesoamerica. Hydrology and Earth System Sciences, 2010, 14, 1801-1817.	1.9	19
56	Hot topics in governance for forests and trees: Towards a (just) transformative research agenda. Forest Policy and Economics, 2021, 131, 102567.	1.5	19
57	Accounting methods for carbon credits: impacts on the minimum area of forestry projects under the Clean Development Mechanism. Climate Policy, 2004, 4, 193-204.	2.6	18
58	Global changes, livestock and vulnerability: the social construction of markets as an adaptive strategy. Geographical Journal, 2016, 182, 153-164.	1.6	18
59	Advancing research on ecosystem service bundles for comparative assessments and synthesis. Ecosystems and People, 2022, 18, 99-111.	1.3	18
60	Spatial congruence between carbon and biodiversity across forest landscapes of northern Borneo. Global Ecology and Conservation, 2016, 6, 105-120.	1.0	17
61	Role of the Maddenâ€Julian Oscillation in the Transport of Smoke From Sumatra to the Malay Peninsula During Severe Nonâ€El Niño Haze Events. Journal of Geophysical Research D: Atmospheres, 2018, 123, 6282-6294.	1.2	17
62	Historical reconfigurations of a social–ecological system adapting to economic, policy and climate changes in the French Alps. Regional Environmental Change, 2021, 21, 1.	1.4	17
63	Dynamics of Ecosystem Services during Forest Transitions in Reventazón, Costa Rica. PLoS ONE, 2016, 11, e0158615.	1.1	17
64	Impact of Climate Change on Ecosystem Services. , 2016, , 251-261.		16
65	Climate change policy networks: connecting adaptation and mitigation in multiplex networks in Peru. Climate Policy, 2020, 20, 354-372.	2.6	13
66	Climate change and outbreaks of Southern Pine Beetle in Honduras. Forest Systems, 2010, 19, 70.	0.1	13
67	Will Simplified Modalities and Procedures Make More Small-Scale Forestry Projects Viable Under the Clean Development Mechanism?. Mitigation and Adaptation Strategies for Global Change, 2006, 11, 621-643.	1.0	12
68	Actions and leverage points for ecosystem-based adaptation pathways in the Alps. Environmental Science and Policy, 2021, 124, 567-579.	2.4	12
69	Sensing, feeling, thinking: Relating to nature with the body, heart and mind. People and Nature, 2022, 4, 351-364.	1.7	12
70	Research on Climate Change Policies and Rural Development in Latin America: Scope and Gaps. Sustainability, 2017, 9, 1831.	1.6	11
71	Collective and individual interdisciplinarity in a sustainability research group: A social network analysis. Sustainability Science, 2021, 16, 37-52.	2.5	11
72	Engaging with the future: framings of adaptation to climate change in conservation. Ecosystems and People, 2022, 18, 174-188.	1.3	9

#	Article	IF	CITATIONS
73	What drives the vulnerability of rural communities to climate variability? Consensus and diverging views in the Congo Basin. Climate and Development, 2018, 10, 49-60.	2.2	8
74	Prepare for the unanticipated: Portfolios of coping strategies of rural households facing diverse shocks. Journal of Rural Studies, 2020, 80, 91-100.	2.1	7
75	A methodological proposal for the evaluation of farmer's adaptation to climate variability, mainly due to drought in watersheds in Central America. Mitigation and Adaptation Strategies for Global Change, 2009, 14, 169-183.	1.0	6
76	Changement climatique : la vérité est-elle au fond du puits ? Une analyse des controverses sur les puits de carbone. Natures Sciences Societes, 2002, 10, 7-19.	0.1	5
77	Trees as brokers in social networks: Cascades of rights and benefits from a Cultural Keystone Species. Ambio, 2022, 51, 2137-2154.	2.8	5
78	Ecosystem-Based Strategies for Community Resilience to Climate Variability in Indonesia. Advances in Natural and Technological Hazards Research, 2016, , 529-552.	1.1	4
79	Fighting climate change. Local, global: integrating mitigation and adaptation. Perspective, 2010, , 1-4.	0.3	4
80	Mitigación en la selva, adaptación en la sierra y la costa: ¿Oportunidades perdidas de sinergias frente al cambio climático en Perú. Ambiente Y Desarrollo, 2014, 18, 95.	0.1	3
81	AgroecologÃa para la seguridad alimentaria y frente al cambio climático en Perú. Economia Agraria Y Recursos Naturales, 2022, 22, 5-29.	0.1	1
82	Models for integrating climate objectives in forest policy: Towards adaptation-first?. Land Use Policy, 2021, 104, 105357.	2.5	0
83	Accounting methods for carbon credits: impacts on the minimum area of forestry projects under the	2.6	Ο