Vadim Volotchaev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8609195/publications.pdf

Version: 2024-02-01

840776 940533 16 311 11 16 citations h-index g-index papers 17 17 17 389 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Mixed oxides of sodium, antimony (5+) and divalent metals (Ni, Co, Zn or Mg). Journal of Solid State Chemistry, 2010, 183, 684-691.	2.9	69
2	Bimetallic PtCu core-shell nanoparticles in PtCu/C electrocatalysts: Structural and electrochemical characterization. Applied Catalysis A: General, 2016, 525, 226-236.	4.3	44
3	Effect of ionic size on the orbital ordering transition in RMnO3+ \hat{l} . New Journal of Physics, 2004, 6, 153-153.	2.9	37
4	Crystal growth and crystal structures of the layered ionic conductors–sodium lithium titanium oxides. Solid State Sciences, 2000, 2, 443-449.	0.7	21
5	Phase behavior of Pt–Cu nanoparticles with different architecture upon their thermal treatment. Nanotechnologies in Russia, 2017, 12, 147-155.	0.7	20
6	Stability and activity of platinum nanoparticles in the oxygen electroreduction reaction: is size or uniformity of primary importance?. Beilstein Journal of Nanotechnology, 2021, 12, 593-606.	2.8	18
7	Morphology and Surface Structure of Silver Carboxylates. Crystal Growth and Design, 2006, 6, 1027-1032.	3.0	16
8	The relationship between activity and stability of deposited platinum-carbon electrocatalysts. Russian Journal of Electrochemistry, 2017, 53, 531-539.	0.9	16
9	Effect of CO atmosphere on morphology and electrochemically active surface area in the synthesis of Pt/C and PtAg/C electrocatalysts. Nanotechnologies in Russia, 2016, 11, 287-296.	0.7	14
10	Influence of Electrochemical Pretreatment Conditions of PtCu/C Alloy Electrocatalyst on Its Activity. Nanomaterials, 2021, 11, 1499.	4.1	14
11	Synthesis of nanostructured Pt/C electrocatalysts and effects of ambient atmosphere composition and an intermediate support on their microstructure. Inorganic Materials, 2016, 52, 23-28.	0.8	12
12	Effect of ethylene glycol on electrochemical and morphological features of platinum electrodeposits from chloroplatinic acid. Journal of Applied Electrochemistry, 2015, 45, 623-633.	2.9	9
13	The effect of thermal treatment on the atomic structure of core–shell PtCu nanoparticles in PtCu/C electrocatalysts. Physics of the Solid State, 2017, 59, 1666-1673.	0.6	9
14	Microstructure Optimization of Pt/C Catalysts for PEMFC. Springer Proceedings in Physics, 2016, , 37-49.	0.2	4
15	On the possibilities of recognizing the architecture of binary Pt–M nanoparticles. Nanotechnologies in Russia, 2017, 12, 227-235.	0.7	4
16	High Gas Sensitivity to Nitrogen Dioxide of Nanocomposite ZnO-SnO2 Films Activated by a Surface Electric Field. Nanomaterials, 2022, 12, 2025.	4.1	4