Jun Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8609107/publications.pdf

Version: 2024-02-01

		12303	15218
182	16,682	69	126
papers	citations	h-index	g-index
188	188	188	13178
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The molecular necklace: a rotaxane containing many threaded î±-cyclodextrins. Nature, 1992, 356, 325-327.	13.7	1,305
2	Chitosanâ€Functionalized Graphene Oxide as a Nanocarrier for Drug and Gene Delivery. Small, 2011, 7, 1569-1578.	5.2	800
3	Cyclodextrin-based supramolecular architectures: Syntheses, structures, and applications for drug and gene delivery. Advanced Drug Delivery Reviews, 2008, 60, 1000-1017.	6.6	725
4	Synthesis of a tubular polymer from threaded cyclodextrins. Nature, 1993, 364, 516-518.	13.7	612
5	Preparation and properties of inclusion complexes of polyethylene glycol with .alphacyclodextrin. Macromolecules, 1993, 26, 5698-5703.	2.2	466
6	Coaxial Electrospinning of (Fluorescein Isothiocyanate-Conjugated Bovine Serum) Tj ETQq0 0 0 rgBT /Overlock 10 2006, 7, 1049-1057.		' Td (Albumir 459
7	Self-assembled supramolecular hydrogels formed by biodegradable PEO–PHB–PEO triblock copolymers and î±-cyclodextrin for controlled drug delivery. Biomaterials, 2006, 27, 4132-4140.	5.7	415
8	Double-stranded inclusion complexes of cyclodextrin threaded on poly(ethylene glycol). Nature, 1994, 370, 126-128.	13.7	383
9	Preparation and Characterization of Inclusion Complexes of Poly(propylene glycol) with Cyclodextrins. Macromolecules, 1995, 28, 8406-8411.	2.2	359
10	Sol–Gel Transition during Inclusion Complex Formation between α-Cyclodextrin and High Molecular Weight Poly(ethylene glycol)s in Aqueous Solution. Polymer Journal, 1994, 26, 1019-1026.	1.3	304
11	Preparation and Characterization of a Polyrotaxane Consisting of Monodisperse Poly(ethylene) Tj ETQq1 1 0.7843	14 rgBT /0 6.6	Dyerlock 1.0
12	New Biodegradable Thermogelling Copolymers Having Very Low Gelation Concentrations. Biomacromolecules, 2007, 8, 585-593.	2.6	254
13	Injectable drug-delivery systems based on supramolecular hydrogels formed by poly(ethylene oxide)s and ?-cyclodextrin. Journal of Biomedical Materials Research Part B, 2003, 65A, 196-202.	3.0	249
14	Preparation and Characterization of Polypseudorotaxanes Based on Block-Selected Inclusion Complexation between Poly(propylene oxide)-Poly(ethylene oxide)-Poly(propylene oxide) Triblock Copolymers and ±-Cyclodextrin. Journal of the American Chemical Society, 2003, 125, 1788-1795.	6.6	218
15	Controlled drug release from biodegradable thermoresponsive physical hydrogel nanofibers. Journal of Controlled Release, 2010, 143, 175-182.	4.8	206
16	Cationic star polymers consisting of α-cyclodextrin core and oligoethylenimine arms as nonviral gene delivery vectors. Biomaterials, 2007, 28, 3245-3254.	5.7	198
17	Formation of Supramolecular Hydrogels Induced by Inclusion Complexation between Pluronics and α-Cyclodextrin. Macromolecules, 2001, 34, 7236-7237.	2.2	195
18	Hydrolytic degradation and protein release studies of thermogelling polyurethane copolymers consisting of poly[(R)-3-hydroxybutyrate], poly(ethylene glycol), and poly(propylene glycol). Biomaterials, 2007, 28, 4113-4123.	5.7	193

#	Article	IF	CITATIONS
19	Cationic Supramolecules Composed of Multiple Oligoethylenimine-Grafted \hat{l}^2 -Cyclodextrins Threaded on a Polymer Chain for Efficient Gene Delivery. Advanced Materials, 2006, 18, 2969-2974.	11.1	192
20	Star-Shaped Cationic Polymers by Atom Transfer Radical Polymerization from \hat{l}^2 -Cyclodextrin Cores for Nonviral Gene Delivery. Biomacromolecules, 2009, 10, 285-293.	2.6	189
21	Injectable Thermoresponsive Hydrogel Formed by Alginate- <i>g</i> -Poly(<i>N</i> -isopropylacrylamide) That Releases Doxorubicin-Encapsulated Micelles as a Smart Drug Delivery System. ACS Applied Materials & Delivery System. ACS Applied	4.0	178
22	Chitosan-graft-(PEI- $\hat{1}^2$ -cyclodextrin) copolymers and their supramolecular PEGylation for DNA and siRNA delivery. Biomaterials, 2011, 32, 8328-8341.	5.7	168
23	Synthesis and water-swelling of thermo-responsive poly(ester urethane)s containing poly(ε-caprolactone), poly(ethylene glycol) and poly(propylene glycol). Biomaterials, 2008, 29, 3185-3194.	5.7	157
24	Preparation and characterization of polyrotaxanes containing many threaded .alphacyclodextrins. Journal of Organic Chemistry, 1993, 58, 7524-7528.	1.7	154
25	Biodegradable thermogelling poly(ester urethane)s consisting of poly(lactic acid) – Thermodynamics of micellization and hydrolytic degradation. Biomaterials, 2008, 29, 2164-2172.	5 . 7	153
26	Formation of Inclusion Complexes of Monodisperse Oligo(ethylene glycol)s with alphaCyclodextrin. Macromolecules, 1994, 27, 4538-4543.	2.2	147
27	Pseudo-Block Copolymer Based on Star-Shaped Poly(<i>N</i> -isopropylacrylamide) with a β-Cyclodextrin Core and Guest-Bearing PEG: Controlling Thermoresponsivity through Supramolecular Self-Assembly. Macromolecules, 2008, 41, 5967-5970.	2.2	145
28	Synthesis and Characterization of New Biodegradable Amphiphilic Poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 2 2003, 36, 2661-2667.	10 Tf 50 38 2.2	7 Td (oxide)-b 143
29	Supramolecular self-assembly forming a multifunctional synergistic system for targeted co-delivery of gene and drug. Biomaterials, 2014, 35, 1050-1062.	5.7	142
30	FGFR-targeted gene delivery mediated by supramolecular assembly between \hat{l}^2 -cyclodextrin-crosslinked PEI and redox-sensitive PEG. Biomaterials, 2013, 34, 6482-6494.	5.7	138
31	Functionalization of Nylon Membranes via Surface-Initiated Atom-Transfer Radical Polymerization. Langmuir, 2007, 23, 8585-8592.	1.6	134
32	Self-Assembly and Micellization of a Dual Thermoresponsive Supramolecular Pseudo-Block Copolymer. Macromolecules, 2011, 44, 1182-1193.	2.2	134
33	A Thermoresponsive Hydrogel Formed from a Star–Star Supramolecular Architecture. Angewandte Chemie - International Edition, 2013, 52, 6180-6184.	7.2	131
34	Synthesis of Novel Biodegradable Thermoresponsive Triblock Copolymers Based on Poly[(<i>R</i>)-3-hydroxybutyrate] and Poly(<i>N</i> -isopropylacrylamide) and Their Formation of Thermoresponsive Micelles. Macromolecules, 2009, 42, 194-202.	2.2	130
35	Thermo- and pH-Responsive Association Behavior of Dual Hydrophilic Graft Chitosan Terpolymer Synthesized via ATRP and Click Chemistry. Macromolecules, 2010, 43, 5679-5687.	2.2	130
36	Pentablock copolymers of poly(ethylene glycol), poly((2-dimethyl amino)ethyl methacrylate) and poly(2-hydroxyethyl methacrylate) from consecutive atom transfer radical polymerizations for non-viral gene delivery. Biomaterials, 2008, 29, 3023-3033.	5.7	129

#	Article	IF	Citations
37	Supramolecular Anchoring of DNA Polyplexes in Cyclodextrin-Based Polypseudorotaxane Hydrogels for Sustained Gene Delivery. Biomacromolecules, 2012, 13, 3162-3172.	2.6	129
38	Self-assembled supramolecular hydrogels based on polymer–cyclodextrin inclusion complexes for drug delivery. NPG Asia Materials, 2010, 2, 112-118.	3.8	128
39	Complex formation between polyisobutylene and cyclodextrins: inversion of chain-length selectivity between .betacyclodextrin and .gammacyclodextrin. Macromolecules, 1993, 26, 5267-5268.	2.2	122
40	Biodegradable thermosensitive copolymer hydrogels for drug delivery. Expert Opinion on Therapeutic Patents, 2007, 17, 965-977.	2.4	121
41	The in vitro hydrolysis of poly(ester urethane)s consisting of poly[(R)-3-hydroxybutyrate] and poly(ethylene glycol). Biomaterials, 2006, 27, 1841-1850.	5.7	117
42	Mechanism of Protein Release from Polyelectrolyte Multilayer Microcapsules. Biomacromolecules, 2010, 11, 1241-1247.	2.6	116
43	Comb-Shaped Copolymers Composed of Hydroxypropyl Cellulose Backbones and Cationic Poly((2-dimethyl amino)ethyl methacrylate) Side Chains for Gene Delivery. Bioconjugate Chemistry, 2009, 20, 1449-1458.	1.8	114
44	Hepatocyte Encapsulation for Enhanced Cellular Functions. Tissue Engineering, 2000, 6, 481-495.	4.9	113
45	Supramolecular hydrogels based on cyclodextrin–polymer polypseudorotaxanes: materials design and hydrogel properties. Soft Matter, 2011, 7, 11290.	1.2	111
46	Biodegradable Hyperbranched Amphiphilic Polyurethane Multiblock Copolymers Consisting of Poly(propylene glycol), Poly(ethylene glycol), and Polycaprolactone as <i>in Situ</i> Thermogels. Biomacromolecules, 2012, 13, 3977-3989.	2.6	111
47	Functionalization of Chitosan via Atom Transfer Radical Polymerization for Gene Delivery. Advanced Functional Materials, 2010, 20, 3106-3116.	7.8	106
48	A Novel Route toward the Synthesis of High-Quality Large-Pore Periodic Mesoporous Organosilicas. Journal of Physical Chemistry B, 2004, 108, 4684-4689.	1.2	104
49	Poly(ester urethane)s Consisting of Poly[(R)-3-hydroxybutyrate] and Poly(ethylene glycol) as Candidate Biomaterials:Â Characterization and Mechanical Property Study. Biomacromolecules, 2005, 6, 2740-2747.	2.6	102
50	Biodegradable Thermogelling Poly[(<i>R</i>)-3-hydroxybutyrate]-Based Block Copolymers: Micellization, Gelation, and Cytotoxicity and Cell Culture Studies. Journal of Physical Chemistry B, 2009, 113, 11822-11830.	1.2	100
51	Low molecular weight polyethylenimine cross-linked by 2-hydroxypropyl- $\hat{1}^3$ -cyclodextrin coupled to peptide targeting HER2 as a gene delivery vector. Biomaterials, 2010, 31, 1830-1838.	5.7	98
52	Highly Efficient Multifunctional Supramolecular Gene Carrier System Selfâ€Assembled from Redoxâ€Sensitive and Zwitterionic Polymer Blocks. Advanced Functional Materials, 2014, 24, 3874-3884.	7.8	98
53	Synthesis and Characterization of Polyrotaxanes Consisting of Cationic α-Cyclodextrins Threaded on Poly[(ethylene oxide)-ran-(propylene oxide)] as Gene Carriers. Biomacromolecules, 2007, 8, 3365-3374.	2.6	97
54	Polyrotaxanes for applications in life science and biotechnology. Applied Microbiology and Biotechnology, 2011, 90, 427-443.	1.7	95

#	Article	IF	CITATIONS
55	Encapsulation of basic fibroblast growth factor in thermogelling copolymers preserves its bioactivity. Journal of Materials Chemistry, 2011, 21, 2246.	6.7	94
56	Micellization Phenomena of Biodegradable Amphiphilic Triblock Copolymers Consisting of Poly(\hat{l}^2 -hydroxyalkanoic acid) and Poly(ethylene oxide). Langmuir, 2005, 21, 8681-8685.	1.6	93
57	Enhanced Photocatalysis by Doping Cerium into Mesoporous Titania Thin Films. Journal of Physical Chemistry C, 2009, 113, 21406-21412.	1.5	92
58	Folic Acid Modified Cationic î³-Cyclodextrin-oligoethylenimine Star Polymer with Bioreducible Disulfide Linker for Efficient Targeted Gene Delivery. Biomacromolecules, 2013, 14, 476-484.	2.6	91
59	Micellization and phase transition behavior of thermosensitive poly(N-isopropylacrylamide) triblock copolymers. Polymer, 2008, 49, 5084-5094.	1.8	89
60	Efficient gene delivery with paclitaxel-loaded DNA-hybrid polyplexes based on cationic polyhedral oligomeric silsesquioxanes. Journal of Materials Chemistry, 2010, 20, 10634.	6.7	85
61	Functionalization of lignin through ATRP grafting of poly(2-dimethylaminoethyl methacrylate) for gene delivery. Colloids and Surfaces B: Biointerfaces, 2015, 125, 230-237.	2.5	84
62	Formation of Inclusion Complexes of Oligoethylene and Its Derivatives with î±-Cyclodextrin. Bulletin of the Chemical Society of Japan, 1994, 67, 2808-2818.	2.0	82
63	Cyclodextrin functionalized mesoporous silica films on quartz crystal microbalance for enhanced gas sensing. Sensors and Actuators B: Chemical, 2006, 119, 220-226.	4.0	81
64	Block-Selected Molecular Recognition and Formation of Polypseudorotaxanes between Poly(propylene oxide)-Poly(ethylene oxide)-Poly(propylene oxide) Triblock Copolymers and 1±-Cyclodextrin. Angewand te Chemie - International Edition, 2003, 42, 69-72.	7.2	80
65	Surface Coating with a Thermoresponsive Copolymer for the Culture and Nonâ€Enzymatic Recovery of Mouse Embryonic Stem Cells. Macromolecular Bioscience, 2009, 9, 1069-1079.	2.1	80
66	Cationic supramolecular nanoparticles for co-delivery of gene and anticancer drug. Chemical Communications, 2011, 47, 5572-5574.	2.2	80
67	Novel poly(N-isopropylacrylamide)-poly[(R)-3-hydroxybutyrate]-poly(N-isopropylacrylamide) triblock copolymer surface as a culture substrate for human mesenchymal stem cells. Soft Matter, 2009, 5, 2937.	1.2	78
68	Dynamic and Static Light Scattering Studies on Self-Aggregation Behavior of Biodegradable Amphiphilic Poly(ethylene oxide)â^'Poly[(R)-3-hydroxybutyrate]â^'Poly(ethylene oxide) Triblock Copolymers in Aqueous Solution. Journal of Physical Chemistry B, 2006, 110, 5920-5926.	1.2	73
69	Complex Formation between Poly(methyl vinyl ether) and \hat{l}^3 -Cyclodextrin. Chemistry Letters, 1993, 22, 237-240.	0.7	71
70	Substrate-Assisted Crystallization and Photocatalytic Properties of Mesoporous TiO2 Thin Films. Chemistry of Materials, 2006, 18, 2917-2923.	3.2	69
71	Supramolecular hydrogels based on selfâ€assembly between PEOâ€PPOâ€PEO triblock copolymers and αâ€eyclodextrin. Journal of Biomedical Materials Research - Part A, 2009, 88A, 1031-1036.	2.1	69
72	Preparation and Characterization of Inclusion Complexes of Biodegradable Amphiphilic Poly(ethylene) Tj ETQq0 Macromolecules, 2003, 36, 1209-1214.	0 0 0 rgBT / 2.2	Overlock 10 Tf 68

Macromolecules, 2003, 36, 1209-1214.

#	Article	lF	CITATIONS
73	Thermoresponsive Delivery of Paclitaxel by \hat{l}^2 -Cyclodextrin-Based Poly($\langle i \rangle N \langle j \rangle$ -isopropylacrylamide) Star Polymer via Inclusion Complexation. Biomacromolecules, 2016, 17, 3957-3963.	2.6	68
74	Thermoresponsive Hydrogel Induced by Dual Supramolecular Assemblies and Its Controlled Release Property for Enhanced Anticancer Drug Delivery. Biomacromolecules, 2020, 21, 1516-1527.	2.6	67
75	Structures of polyrotaxane models. Carbohydrate Research, 1997, 305, 127-129.	1.1	61
76	Encapsulation of Basic Fibroblast Growth Factor by Polyelectrolyte Multilayer Microcapsules and Its Controlled Release for Enhancing Cell Proliferation. Biomacromolecules, 2012, 13, 2174-2180.	2.6	61
77	Hyaluronic acid conjugated \hat{l}^2 -cyclodextrin-oligoethylenimine star polymer for CD44-targeted gene delivery. International Journal of Pharmaceutics, 2015, 483, 169-179.	2.6	61
78	Thermo-Responsive Porous Membranes of Controllable Porous Morphology from Triblock Copolymers of Polycaprolactone and Poly(N-isopropylacrylamide) Prepared by Atom Transfer Radical Polymerization. Biomacromolecules, 2008, 9, 331-339.	2.6	60
79	Effect of PEG on the crystallization of PPDO/PEG blends. European Polymer Journal, 2005, 41, 1243-1250.	2.6	58
80	Thermoresponsive supramolecular micellar drug delivery system based on star-linear pseudo-block polymer consisting of \hat{l}^2 -cyclodextrin-poly(N-isopropylacrylamide) and adamantyl-poly(ethylene glycol). Journal of Colloid and Interface Science, 2017, 490, 372-379.	5.0	58
81	Coreâ^'Corona Structure of Cubic Silsesquioxane-Poly(Ethylene Oxide) in Aqueous Solution:Â Fluorescence, Light Scattering, and TEM Studies. Journal of Physical Chemistry B, 2005, 109, 9455-9462.	1.2	57
82	Synthesis of Supramolecular Nanocapsules Based on Threading of Multiple Cyclodextrins over Polymers on Gold Nanoparticles. Angewandte Chemie - International Edition, 2009, 48, 3842-3845.	7.2	57
83	Improving hydrophilicity, mechanical properties and biocompatibility of poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyvalerate] through blending with poly[(R)-3-hydroxybutyrate]-alt-poly(ethylene oxide). Acta Biomaterialia, 2009, 5, 2002-2012.	4.1	57
84	Inclusion Complexation and Formation of Polypseudorotaxanes between Poly[(ethylene) Tj ETQq0 0 0 rgBT /Ove	rlock 10 T	f 50 302 Td (
85	Control of Hyperbranched Structure of Polycaprolactone/Poly(ethylene glycol) Polyurethane Block Copolymers by Glycerol and Their Hydrogels for Potential Cell Delivery. Journal of Physical Chemistry B, 2013, 117, 14763-14774.	1.2	54
86	Preparation and characterization of inclusion complexes formed by biodegradable poly(Îμ-caprolactone)–poly(tetrahydrofuran)–poly(Îμ-caprolactone) triblock copolymer and cyclodextrins. Polymer, 2004, 45, 1777-1785.	1.8	53
87	Photo-crosslinkable microcapsules formed by polyelectrolyte copolymer and modified collagen for rat hepatocyte encapsulation. Biomaterials, 2004, 25, 3531-3540.	5.7	50
88	Gelatin-based hydrogels with \hat{l}^2 -cyclodextrin as a dual functional component for enhanced drug loading and controlled release. RSC Advances, 2013, 3, 25041.	1.7	49
89	Non-ionic [2]rotaxanes containing methylated \hat{l} ±-cyclodextrins. Chemical Communications, 1997, , 1413-1414.	2.2	48
90	Spatially well-defined binary brushes of poly(ethylene glycol)s for micropatterning of active proteins on anti-fouling surfaces. Biosensors and Bioelectronics, 2008, 24, 773-780.	5.3	48

#	Article	IF	Citations
91	Construction of a Star-Shaped Copolymer as a Vector for FGF Receptor-Mediated Gene Delivery In Vitro and In Vivo. Biomacromolecules, 2010, 11, 2221-2229.	2.6	48
92	Elucidating rheological property enhancements in supramolecular hydrogels of short poly[(R,S)-3-hydroxybutyrate]-based amphiphilic triblock copolymer and l±-cyclodextrin for injectable hydrogel applications. Soft Matter, 2010, 6, 2300.	1.2	47
93	Supramolecular hydrogels based on inclusion complexation between poly(ethylene oxide)â€ <i>b</i> â€poly (εâ€εaprolactone) diblock copolymer and αâ€εyclodextrin and their controlled release property. Journal of Biomedical Materials Research - Part A, 2008, 86A, 1055-1061.	2.1	46
94	Biomass-based thermogelling copolymers consisting of lignin and grafted poly(N-isopropylacrylamide), poly(ethylene glycol), and poly(propylene glycol). RSC Advances, 2014, 4, 42996-43003.	1.7	44
95	Silk Fibroin-Based Complex Particles with Bioactive Encrustation for Bone Morphogenetic Protein 2 Delivery. Biomacromolecules, 2013, 14, 4465-4474.	2.6	43
96	Highly dispersed gold nanoparticles assembled in mesoporous titania films of cubic configuration. Microporous and Mesoporous Materials, 2008, 110, 242-249.	2.2	42
97	Cationic Polyrotaxanes as Gene Carriers: Physicochemical Properties and Real-Time Observation of DNA Complexation, and Gene Transfection in Cancer Cells. Journal of Physical Chemistry B, 2009, 113, 7903-7911.	1.2	42
98	Self-assembly of pH-responsive and fluorescent comb-like amphiphilic copolymers in aqueous media. Polymer, 2010, 51, 3377-3386.	1.8	42
99	Polyethyleneimine-grafted hyperbranched conjugated polyelectrolytes: synthesis and imaging of gene delivery. Polymer Chemistry, 2013, 4, 5297.	1.9	41
100	Designing Poly[(<i>R</i>)-3-hydroxybutyrate]-Based Polyurethane Block Copolymers for Electrospun Nanofiber Scaffolds with Improved Mechanical Properties and Enhanced Mineralization Capability. Journal of Physical Chemistry B, 2010, 114, 7489-7498.	1.2	40
101	A smart thermoresponsive adsorption system for efficient copper ion removal based on alginate-g-poly(N-isopropylacrylamide) graft copolymer. Carbohydrate Polymers, 2019, 219, 280-289.	5.1	39
102	Surface Charge Switchable Polymer/DNA Nanoparticles Responsive to Tumor Extracellular pH for Tumor-Triggered Enhanced Gene Delivery. Biomacromolecules, 2020, 21, 1136-1148.	2.6	39
103	Threading α-Cyclodextrin through Poly[(<i>R,S</i>)-3-hydroxybutyrate] in Poly[(<i>R,S</i>)-3-hydroxybutyrate] â^Poly(ethylene glycol)â^Poly[(<i>R,S</i>)-3-hydroxybutyrate] Triblock Copolymers: Formation of Block-Selected Polypseudorotaxanes. Macromolecules, 2008, 41, 6027-6034.	2.2	38
104	Synthesis, Characterization, and Morphology Studies of Biodegradable Amphiphilic Poly[(R)-3-hydroxybutyrate]-alt-Poly(ethylene glycol) Multiblock Copolymers. Biomacromolecules, 2006, 7, 3112-3119.	2.6	37
105	Cationic supramolecules consisting of oligoethylenimineâ€grafted αâ€cyclodextrins threaded on poly(ethylene oxide) for gene delivery. Journal of Biomedical Materials Research - Part A, 2009, 89A, 13-23.	2.1	37
106	Facile synthesis of multifunctional carbon dots with 54.4% orange emission for label-free detection of morin and endogenous/exogenous hypochlorite. Journal of Hazardous Materials, 2022, 424, 127289.	6.5	36
107	Controlled synthesis and characterizations of amphiphilic poly[(R,S)-3-hydroxybutyrate]-poly(ethylene) Tj ETQq1	1 0.7843 1.8	14 rgBT /Ove
108	Multifunctional Hybrid Nanocarriers Consisting of Supramolecular Polymers and Quantum Dots for Simultaneous Dual Therapeutics Delivery and Cellular Imaging. Advanced Healthcare Materials, 2013, 2, 297-301.	3.9	33

#	Article	IF	CITATIONS
109	Rapid colorimetric detection of p53 protein function using DNA-gold nanoconjugates with applications for drug discovery and cancer diagnostics. Colloids and Surfaces B: Biointerfaces, 2018, 169, 214-221.	2.5	33
110	Compositional study and cytotoxicity of biodegradable poly(ester urethane)s consisting of poly[(R)-3-hydroxybutyrate] and poly(ethylene glycol). Materials Science and Engineering C, 2007, 27, 267-273.	3.8	31
111	Amphiphilic star-block copolymers and supramolecular transformation of nanogel-like micelles to nanovesicles. Chemical Communications, 2011, 47, 12849.	2.2	30
112	Gelatin–siloxane nanoparticles to deliver nitric oxide for vascular cell regulation: Synthesis, cytocompatibility, and cellular responses. Journal of Biomedical Materials Research - Part A, 2015, 103, 929-938.	2.1	30
113	Self-association and micelle formation of biodegradable poly(ethylene glycol)-poly(L-lactic acid) amphiphilic di-block co-polymers. Journal of Biomaterials Science, Polymer Edition, 2006, 17, 747-763.	1.9	29
114	Thermal properties and non-isothermal crystallization behavior of biodegradable poly(p-dioxanone)/poly(vinyl alcohol) blends. Polymer International, 2006, 55, 383-390.	1.6	29
115	A supramolecular platform for controlling and optimizing molecular architectures of siRNA targeted delivery vehicles. Science Advances, 2020, 6, eabc2148.	4.7	29
116	Inclusion complex formation between ?,?-cyclodextrins and organic-inorganic star-shaped poly(ethylene glycol) from an octafunctional silsesquioxane core. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 1173-1180.	2.4	28
117	Role of intermolecular interaction between hydrophobic blocks in block-selected inclusion complexation of amphiphilic poly(ethylene oxide)-poly[(R)-3-hydroxybutyrate]-poly(ethylene oxide) triblock copolymers with cyclodextrins. Polymer, 2004, 45, 6845-6851.	1.8	28
118	A supramolecular gene carrier composed of multiple cationic α-cyclodextrins threaded on a PPO–PEO–PPO triblock polymer. Polymer, 2009, 50, 1378-1388.	1.8	28
119	Pore structure characterization of large-pore periodic mesoporous organosilicas synthesized with varying SiO2/template ratios. Applied Surface Science, 2004, 237, 380-386.	3.1	27
120	Cyclodextrin Inclusion Polymers Forming Hydrogels. Advances in Polymer Science, 2009, , 175-203.	0.4	27
121	î²-Cyclodextrin-Polyacrylamide Hydrogel for Removal of Organic Micropollutants from Water. Molecules, 2021, 26, 5031.	1.7	26
122	Macromolecular Recognition. Formation of Inclusion Complexes of Polymers with Cyclodextrins Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 1993, 69, 39-44.	1.6	25
123	A novel biodegradable polyester from chain-extension of poly(p-dioxanone) with poly(butylene) Tj ETQq1 1 0.784	814 rgBT / 2.7	Overlock 10
124	Clickable poly(ester amine) dendrimer-grafted Fe3O4 nanoparticles prepared via successive Michael addition and alkyne–azide click chemistry. Polymer Chemistry, 2011, 2, 1312.	1.9	25
125	Supramolecular hydrogels formed by pyrene-terminated poly(ethylene glycol) star polymers through inclusion complexation of pyrene dimers with \hat{I}^3 -cyclodextrin. Chemical Communications, 2012, 48, 5638.	2.2	25
126	Biodegradable thermogelling poly(ester urethane)s consisting of poly(1,4-butylene adipate), poly(ethylene glycol), and poly(propylene glycol). Soft Matter, 2013, 9, 787-794.	1.2	25

#	Article	IF	CITATIONS
127	Host–guest interaction induced supramolecular amphiphilic star architecture and uniform nanovesicle formation for anticancer drug delivery. Nanoscale, 2016, 8, 1332-1337.	2.8	25
128	Converting Okara to Superabsorbent Hydrogels as Soil Supplements for Enhancing the Growth of Choy Sum (<i>Brassica</i> sp.) under Water-Limited Conditions. ACS Sustainable Chemistry and Engineering, 2020, 8, 9425-9433.	3.2	25
129	Pore structure characterization of large-pore periodic mesoporous organosilicas synthesized with varying SiO2/template ratios. Applied Surface Science, 2004, 237, 380-386.	3.1	25
130	Polyethyleneimine-grafted poly(N-3-hydroxypropyl)aspartamide as a biodegradable gene vector for efficient gene transfection. Soft Matter, 2010, 6, 955.	1.2	24
131	One-pot synthesis of cyclodextrin-based radial poly[n]catenanes. Communications Chemistry, 2019, 2, .	2.0	24
132	Thermoresponsive Behavior of Cationic Polyrotaxane Composed of Multiple Pentaethylenehexamine-grafted α-Cyclodextrins Threaded on Poly(propylene oxide)â^'Poly(ethylene) Tj ETQq0 0 () ilg: BT /Ov	e do ck 10 Tf
133	Novel Supramolecular Block Copolymer: A Polyrotaxane Consisting of Many Threaded $\hat{l}\pm$ and \hat{l}^3 -Cyclodextrins with an ABA Triblock Architecture. Macromolecules, 2009, 42, 3856-3859.	2.2	21
134	Thermoresponsive Formation of Dimethyl Cyclodextrin Polypseudorotaxanes and Subsequent One-Pot Synthesis of Polyrotaxanes. ACS Macro Letters, 2016, 5, 158-162.	2.3	21
135	Synthesis, characterization and hydrolytic degradation of degradable poly(butylene) Tj ETQq1 1 0.784314 rgBT /C	Overlock 1 1.7	0 Tf 50 427 20
136	Synthesis of polyrotaxanes consisting of multiple α-cyclodextrin rings threaded on reverse Pluronic PPO–PEO–PPO triblock copolymers based on block-selected inclusion complexation. European Polymer Journal, 2009, 45, 1570-1579.	2.6	20
137	Bone marrow-derived mesenchymal stem cells assembled with low-dose BMP-2 in a three-dimensional hybrid construct enhances posterolateral spinal fusion in syngeneic rats. Spine Journal, 2015, 15, 2552-2563.	0.6	19
138	Controlling injectability and inÂvivo stability of thermogelling copolymers for delivery of yttrium-90 through intra-tumoral injection for potential brachytherapy. Biomaterials, 2018, 180, 163-172.	5.7	19
139	Chemical Modification of Biomass Okara Using Poly(acrylic acid) through Free Radical Graft Polymerization. Journal of Agricultural and Food Chemistry, 2020, 68, 13241-13246.	2.4	18
140	Conformational Analysis of Oligomers of (R)-3-Hydroxybutanoic Acid in Solutions by1H NMR Spectroscopy. Bulletin of the Chemical Society of Japan, 1998, 71, 1683-1689.	2.0	17
141	Synthesis of Biodegradable Poly(butylene terephthalate)/poly(ethylene glycol) (PBT/PEG) Multiblock Copolymers and Preparation of Indirubin Loaded Microspheres. Polymer Bulletin, 2005, 53, 147-154.	1.7	16
142	Synthesis, characterization, and thermal properties of a novel pentaerythritol-initiated star-shaped poly(p-dioxanone). Journal of Polymer Science Part A, 2006, 44, 1245-1251.	2.5	16
143	Synthesis, characterization, and thermal properties of biodegradable aliphatic copolyester based on $\hat{l}\mu$ -caprolactone, adipic acid, and 1,6-hexanediol. Materials Letters, 2006, 60, 31-38.	1.3	16
144	Molecular Recognition: Preparation of Polyrotaxan and Tubular Polymer from Cyclodextrin. Polymers for Advanced Technologies, 1997, 8, 241-249.	1.6	15

#	Article	IF	CITATIONS
145	Micellization and Thermogelation of Poly(ether urethane)s Comprising Poly(ethylene glycol) and Poly(propylene glycol). Macromolecular Symposia, 2010, 296, 161-169.	0.4	15
146	Synthesis of polypseudorotaxanes and polyrotaxanes with multiple \hat{l}_{\pm} - and \hat{l}_{-} -cyclodextrins co-threaded over poly[(ethylene oxide)-ran-(propylene oxide)]. Polymer, 2009, 50, 4496-4504.	1.8	14
147	Novel Protamine-Based Polyelectrolyte Carrier Enhances Low-Dose rhBMP-2 in Posterolateral Spinal Fusion. Spine, 2015, 40, 613-621.	1.0	14
148	Thermo-responsive transfection of DNA complexes with well-defined chitosan terpolymers. Soft Matter, 2012, 8, 2518.	1.2	12
149	Polyelectrolyte Complex Carrier Enhances Therapeutic Efficiency and Safety Profile of Bone Morphogenetic Protein-2 in Porcine Lumbar Interbody Fusion Model. Spine, 2015, 40, 964-973.	1.0	12
150	Use of okara-derived hydrogel for enhancing growth of plants by minimizing leaching and locking nutrients and water in growing substrate. Ecological Engineering, 2021, 159, 106122.	1.6	12
151	Conformational Behavior of Methyl (3R)-3-{[(3′R)-3′ -Hydroxybutanoyl]oxy}butanoate in Solutions: Effect of Intramolecular Hydrogen Bond. Bulletin of the Chemical Society of Japan, 1997, 70, 1887-1893.	2.0	10
152	Nonviral DNA Delivery System with Supramolecular PEGylation Formed by Host–Guest Pseudo-Block Copolymers. ACS Applied Bio Materials, 2021, 4, 5057-5070.	2.3	10
153	Hydrolytic degradation behavior of biodegradable polyetheresteramide-based polyurethane copolymers. Journal of Biomedical Materials Research - Part A, 2005, 75A, 465-471.	2.1	9
154	Injectable Supramolecular Hydrogels Self-Assembled by Polymers and Cyclodextrins for Controlled Drug Delivery. Key Engineering Materials, 2005, 288-289, 117-120.	0.4	9
155	Supramolecular Polymers Based on Cyclodextrins for Drug and Gene Delivery. Advances in Biochemical Engineering/Biotechnology, 2010, 125, 207-249.	0.6	9
156	Heparin-Based Polyelectrolyte Complex Enhances the Therapeutic Efficacy of Bone Morphogenetic Protein-2 for Posterolateral Fusion in a Large Animal Model. Spine, 2016, 41, 1199-1207.	1.0	9
157	Supramolecular Surface Functionalization of Iron Oxide Nanoparticles with α-Cyclodextrin-Based Cationic Star Polymer for Magnetically-Enhanced Gene Delivery. Pharmaceutics, 2021, 13, 1884.	2.0	9
158	Smart Hydrogel Formed by Alginate-g-Poly(N-isopropylacrylamide) and Chitosan through Polyelectrolyte Complexation and Its Controlled Release Properties. Gels, 2022, 8, 441.	2.1	9
159	New thermogelling copolymers composed of heptakis (2,6-di-O-methyl)- \hat{l}^2 -cyclodextrin, poly (propylene) Tj ETQq1	1	4 _g rgBT /Ove
160	Functional Hydrogels as Biomaterials. Springer Series in Biomaterials Science and Engineering, 2018, , .	0.7	8
161	NMR Spectroscopic Studies on Complex Formation between Dimeric (R)-3-Hydroxybutanoic Acid andÎ ² -Cyclodextrin. Bulletin of the Chemical Society of Japan, 1998, 71, 1953-1957.	2.0	7
162	Formation and Evolution of Body entered Orthorhombic Mesophase in TiO ₂ Thin Films. Journal of the American Ceramic Society, 2009, 92, 1317-1321.	1.9	7

#	Article	IF	Citations
163	PEGylated antibody in organic media. Journal of Bioscience and Bioengineering, 2011, 111, 564-568.	1.1	7
164	In Situ Synthesis of Magnetic Poly(DMAEAB-co-NIPAm)@Fe3O4 Composite Hydrogel for Removal of Dye from Water. Gels, 2021, 7, 201.	2.1	7
165	A hydrogel with supramolecular surface functionalization for cancer cell capture and multicellular spheroid growth and release. Chemical Communications, 2022, 58, 681-684.	2.2	7
166	Yolk shell nanocomposite particles as bioactive bone fillers and growth factor carriers. Nanoscale, 2017, 9, 14520-14532.	2.8	6
167	Bone marrow mesenchymal stem cells with low dose bone morphogenetic protein 2 enhances scaffoldâ€based spinal fusion in a porcine model. Journal of Tissue Engineering and Regenerative Medicine, 2022, 16, 63-75.	1.3	6
168	Mesophase configurations and optical properties of mesoporous TiO2 thin films. Journal of Electroceramics, 2006, 16, 499-502.	0.8	5
169	Cationic brushâ€like terpolymer with <scp>pH</scp> responsive thickening behavior in a surfactant system. Polymer International, 2014, 63, 1584-1592.	1.6	5
170	Ultrastable micelles boost chemotherapy. Nature Biomedical Engineering, 2018, 2, 273-274.	11.6	5
171	Synthesis and Characterization of ZnS:Mn2+ Nano-Particles for White-Light Emitting. Journal of Nanoscience and Nanotechnology, 2008, 8, 1199-1202.	0.9	4
172	Lignin-Based Nonviral Gene Carriers Functionalized by Poly[2-(Dimethylamino)ethyl Methacrylate]: Effect of Grafting Degree and Cationic Chain Length on Transfection Efficiency. Biomolecules, 2022, 12, 102.	1.8	4
173	Preparation of Tubular Polymers from Cyclodextrin. Journal of Macromolecular Science - Pure and Applied Chemistry, 1995, 32, 813-819.	1.2	3
174	Supramolecular Polymers for Potential Biomedical Applications. Advanced Materials Research, 0, 410, 94-97.	0.3	3
175	Instability pathways of hydrogel microlenses under concentrated loadings. Journal of Applied Physics, 2009, 106, 023536.	1.1	2
176	Improving the handling properties and longâ€term stability of polyelectrolyte complex by freezeâ€drying technique for lowâ€dose bone morphogenetic protein 2 delivery. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 2450-2460.	1.6	2
177	Inâ€focus Hydrogels and Waterâ€Soluble Polymers (Proceedings for Symposium <scp>CC</scp> of) Tj ETQq1 I	l 0.784314	rgBT /Over
178	Recent Advances in Polymer-Cyclodextrin Inclusion Complex-Based Supramolecular Hydrogel for Biomedical Applications. Springer Series in Biomaterials Science and Engineering, 2018, , 141-163.	0.7	1
179	Formation of inclusion complexes between dimers of (R)-3-hydroxybutanoic acid and \hat{l}^2 -cyclodextrin: thermodynamic study of the complexation and conformational analysis of the complexed dimers. Perkin Transactions II RSC, 2002, , 35-40.	1.1	0
180	Tailoring of poly(vinyl alcohol) hydrogels properties by incorporation of crosslinked acrylic acid., 2011,,.		0

#	Article	IF	CITATIONS
181	Triggered Enzymatic Biodegradable Drug Delivery Systems Based on Supramolecular Micelles. IFMBE Proceedings, 2011, , 1074-1077.	0.2	O
182	Hydrogels for Stem Cell Encapsulation: Toward Cellular Therapy for Diabetes. Springer Series in Biomaterials Science and Engineering, 2018, , 113-127.	0.7	0