
Vincent Coeffard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8609104/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Merging Oxidative Dearomatization and Aminocatalysis: One-Pot Enantioselective Synthesis of Tricyclic Architectures. Organic Letters, 2013, 15, 5642-5645.	4.6	66
2	First Regio―and Enantioselective Chromium Catalyzed Homoallenylation of Aldehydes. Angewandte Chemie - International Edition, 2009, 48, 9152-9155.	13.8	57
3	Asymmetric organocatalytic functionalization of α,α-disubstituted aldehydes through enamine activation. Tetrahedron, 2014, 70, 2491-2513.	1.9	57
4	Enantioselective Desymmetrization of <i>para</i> -Quinamines through an Aminocatalyzed Aza-Michael/Cyclization Cascade Reaction. Organic Letters, 2015, 17, 3674-3677.	4.6	57
5	Iron-Mediated Domino Interrupted Iso-Nazarov/Dearomative (3 + 2)-Cycloaddition of Electrophilic Indoles. Organic Letters, 2016, 18, 5296-5299.	4.6	49
6	State of the Art of Bodipyâ€Based Photocatalysts in Organic Synthesis. European Journal of Organic Chemistry, 2021, 2021, 1809-1824.	2.4	49
7	Mild Electrochemical Deprotection of <i>N</i> â€Phenylsulfonyl <i>N</i> â€Substituted Amines Derived from (<i>R<td>2.4</td><td>45</td></i>	2.4	45
8	Transitionâ€Metalâ€Free Amination of Aryl boronic Acids and Their Derivatives. Angewandte Chemie - International Edition, 2013, 52, 5684-5686.	13.8	41
9	Hypervalent iodine-mediated synthesis of benzoxazoles andÂbenzimidazoles via an oxidative rearrangement. Tetrahedron, 2015, 71, 700-708.	1.9	41
10	Recent Advances in Ligand Design for the Intermolecular Asymmetric Mizoroki- Heck Reaction. Current Organic Chemistry, 2010, 14, 212-229.	1.6	39
11	Enantioselective Organocatalytic Oneâ€Pot Amination/azaâ€Michael/Aldol Condensation Reaction Sequence: Synthesis of 3â€Pyrrolines with a Quaternary Stereocenter. Chemistry - A European Journal, 2012, 18, 13222-13225.	3.3	36
12	Electrochemical Cleavage of Sulfonamides: An Efficient and Tunable Strategy to Prevent β-Fragmentation and Epimerization. Organic Letters, 2012, 14, 942-945.	4.6	35
13	The synthesis of new oxazoline-containing bifunctional catalysts and their application in the addition of diethylzinc to aldehydes. Organic and Biomolecular Chemistry, 2009, 7, 1723.	2.8	34
14	Primary amine catalyzed electrophilic amination of α,α-disubstituted aldehydes. Tetrahedron Letters, 2011, 52, 4430-4432.	1.4	34
15	A Fused Hexacyclic Ring System: Diastereoselective Polycyclization of 2,4â€Dienals through an Interrupted isoâ€Nazarov Reaction. Angewandte Chemie - International Edition, 2019, 58, 9969-9973.	13.8	33
16	Stereoselective Organocatalytic One-Pot α,α-Bifunctionalization of Acetaldehyde by a Tandem Mannich Reaction/Electrophilic Amination. Organic Letters, 2011, 13, 5778-5781.	4.6	29
17	Preparation and Transmetallation of Enantioenriched αâ€Aminoorganostannanes Derived from <i>N</i> â€Boc Phenylglycinol: Application to the Synthesis of Alafosfalin. European Journal of Organic Chemistry, 2008, 2008, 3344-3351.	2.4	26
18	Siteâ€Selective Calciumâ€Catalyzed/Organocatalyzed Condensation of Propargyl Alcohols Tethered to βâ€Keto Esters. European Journal of Organic Chemistry, 2016, 2016, 2688-2694.	2.4	24

VINCENT COEFFARD

#	Article	IF	CITATIONS
19	Aminocatalyzed Cascade Synthesis of Enantioenriched 1,7â€Annulated Indoles from Indoleâ€7â€Carbaldehyde Derivatives and α,βâ€Unsaturated Aldehydes. Advanced Synthesis and Catalysis, 2015, 357, 3501-3506.	4.3	21
20	Oneâ€Pot Enantioselective Synthesis of 1,4â€Naphthoquinoneâ€Derived Polycycles through Oxidative Dearomatization and Aminocatalysis. European Journal of Organic Chemistry, 2015, 2015, 2005-2011.	2.4	21
21	Oneâ€Pot Synthesis of Functionalized Fused Furans via a BODIPYâ€Catalyzed Domino Photooxygenation. Chemistry - A European Journal, 2018, 24, 4790-4793.	3.3	21
22	The impact of asymmetric organocatalysis in dearomatization and aromatization of carbocycles: increasing molecular complexity and diversity. Tetrahedron Letters, 2016, 57, 2567-2574.	1.4	20
23	Synthesis of Enantioenriched Aza-Proline Derivatives through Gold(I)-Catalyzed Cyclization of Chiral α-Hydrazino Esters. Journal of Organic Chemistry, 2013, 78, 427-437.	3.2	19
24	A fully bio-sourced adsorbent of heavy metals in water fabricated by immobilization of quinine on cellulose paper. Journal of Environmental Sciences, 2019, 84, 174-183.	6.1	18
25	In Situ Generation of Cyclopentadienol Intermediates from 2,4-Dienals. Application to the Synthesis of Spirooxindoles via a Domino Polycyclization. Organic Letters, 2018, 20, 792-795.	4.6	17
26	Solvent- and Catalyst-Free Synthesis of Nitrogen-Containing Bicycles through Hemiaminal Formation/Diastereoselective Hetero-Diels–Alder Reaction with Diazenes. Journal of Organic Chemistry, 2015, 80, 595-601.	3.2	16
27	Multicatalytic dearomatization of phenols into epoxyquinols <i>via</i> a photooxygenation process. Chemical Communications, 2019, 55, 7398-7401.	4.1	16
28	Efficient Synthesis of Unsymmetrical Sulfamides <i>via</i> a Lossenâ€Like Rearrangement. Advanced Synthesis and Catalysis, 2016, 358, 2012-2016.	4.3	15
29	Controlling Photooxygenation with a Bifunctional Quinineâ€BODIPY Catalyst: towards Asymmetric Hydroxylation of βâ€Dicarbonyl Compounds. European Journal of Organic Chemistry, 2019, 2019, 6352-6358.	2.4	15
30	Asymmetric Synthesis of Fused Polycyclic Indazoles through Aminocatalyzed Aza-Michael Addition/Intramolecular Cyclization. Journal of Organic Chemistry, 2016, 81, 6855-6861.	3.2	14
31	Visible-Light-Driven Transformations of Phenols via Energy Transfer Catalysis. Synthesis, 2020, 52, 1617-1624.	2.3	14
32	Synthesis of Highly Enantioenriched Chiral α-Aminoorganotins via Diastereoselective Ring Opening of Chiral <i>N</i> -(Arenesulfonyl) 2-Tributylstannyloxazolidines. Journal of Organic Chemistry, 2009, 74, 5822-5838.	3.2	13
33	Palladium-Catalyzed Three-Component Transformation of Homoallenols: A Regio- and Stereoselective Route to 1,5-Amino Alcohols. Journal of Organic Chemistry, 2011, 76, 3536-3538.	3.2	12
34	Chiral C 2-Symmetric Iodoarene-Catalyzed Asymmetric α-Oxidation of β-Keto Esters. Synthesis, 2016, 48, 2637-2644.	2.3	12
35	An efficient and scalable synthesis of N-(benzyloxycarbonyl)- and N-(methyloxycarbonyl)-(S)-vinylglycinol. Tetrahedron Letters, 2010, 51, 3226-3228.	1.4	11
36	Unusual Oxidative Dealkylation Strategy toward Functionalized Phenalenones as Singlet Oxygen Photosensitizers and Photophysical Studies. Journal of Organic Chemistry, 2020, 85, 10603-10616.	3.2	11

VINCENT COEFFARD

#	Article	IF	CITATIONS
37	Diastereoselective synthesis of chiral α-aminoorganotributyltins via ring-opening of 2-tributylstannyloxazolidines. Journal of Organometallic Chemistry, 2006, 691, 1488-1497.	1.8	10
38	Developing flow photo-thiol–ene functionalizations of cinchona alkaloids with an autonomous self-optimizing flow reactor. Reaction Chemistry and Engineering, 2022, 7, 1346-1357.	3.7	10
39	Aminocatalyzed Synthesis of Enantioenriched Phenalene Skeletons through a Friedel–Crafts/Cyclization Strategy. Journal of Organic Chemistry, 2018, 83, 1019-1025.	3.2	9
40	Atom Economical Photocatalytic Oxidation of Phenols and Site-Selective Epoxidation Toward Epoxyquinols. Journal of Organic Chemistry, 2021, 86, 18192-18203.	3.2	9
41	Preparation of enantiomerically enriched αâ€aminoorganostannanes and their applications in stereoselective synthesis. Chirality, 2010, 22, 864-869.	2.6	8
42	A Fused Hexacyclic Ring System: Diastereoselective Polycyclization of 2,4â€Đienals through an Interrupted isoâ€Nazarov Reaction. Angewandte Chemie, 2019, 131, 10074-10078.	2.0	8
43	Synthesis and Characterizations of Keplerate Nanocapsules Incorporating L- and D-Tartrate Ligands. Journal of Cluster Science, 2017, 28, 799-812.	3.3	7
44	Application of a Oneâ€Pot Friedel–Crafts Alkylation/Michael Addition Methodology to the Asymmetric Synthesis of Ergoline Derivatives. European Journal of Organic Chemistry, 2017, 2017, 6734-6738.	2.4	7
45	Photoinduced Storage and Thermal Release of Singlet Oxygen from 1,2â€Đihydropyridine Endoperoxides. ChemPhotoChem, 2021, 5, 847-856.	3.0	7
46	Synthesis and fluorosolvatochromic properties of 1,7-annulated indoles. New Journal of Chemistry, 2017, 41, 7331-7338.	2.8	5
47	Sulfamide chemistry applied to the functionalization of self-assembled monolayers on gold surfaces. Beilstein Journal of Organic Chemistry, 2017, 13, 648-658.	2.2	5
48	Substrate-Selectivity in Catalytic Photooxygenation Processes Using a Quinine-BODIPY System. Synlett, 2020, 31, 463-468.	1.8	4
49	Stereoselective Synthesis of Stannylated Dehydropiperidines and Dehydroazepanes. European Journal of Organic Chemistry, 2016, 2016, 5146-5159.	2.4	3
50	Stereoselective Multibond-Forming Process towards Functionalized Sulfamide-Containing Polycycles. Synthesis, 2017, 49, 532-538.	2.3	3
51	Precursors of Chiral α-Amino Anions: An Improved Synthesis of Chiral N-(α-Tributylstannylorgano)oxazolidin-2-ones Derived from (R)- or (S)-Phenylglycinol. Synthesis, 2006, 2006, 4151-4158.	2.3	1
52	Cover Picture: First Regio- and Enantioselective Chromium-Catalyzed Homoallenylation of Aldehydes (Angew. Chem. Int. Ed. 48/2009). Angewandte Chemie - International Edition, 2009, 48, 9001-9001.	13.8	1
53	Copper(I) Iodide. Synlett, 2007, 2007, 2456-2457.	1.8	0
54	Titelbild: First Regio- and Enantioselective Chromium-Catalyzed Homoallenylation of Aldehydes (Angew. Chem. 48/2009). Angewandte Chemie, 2009, 121, 9163-9163.	2.0	0