Patrick Biller

List of Publications by Citations

Source: https://exaly.com/author-pdf/8609016/patrick-biller-publications-by-citations.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

44 3,917 22 46 g-index

46 g-index

46 ext. papers ext. citations avg, IF

22 h-index

5.86 L-index

#	Paper	IF	Citations
44	Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content. <i>Bioresource Technology</i> , 2011 , 102, 215-25	11	781
43	Hydrothermal liquefaction of biomass: developments from batch to continuous process. <i>Bioresource Technology</i> , 2015 , 178, 147-156	11	586
42	Hydrothermal processing of microalgae using alkali and organic acids. <i>Fuel</i> , 2010 , 89, 2234-2243	7.1	459
41	Nutrient recycling of aqueous phase for microalgae cultivation from the hydrothermal liquefaction process. <i>Algal Research</i> , 2012 , 1, 70-76	5	372
40	Catalytic hydrothermal processing of microalgae: decomposition and upgrading of lipids. Bioresource Technology, 2011 , 102, 4841-8	11	212
39	Pilot plant testing of continuous hydrothermal liquefaction of microalgae. <i>Algal Research</i> , 2013 , 2, 268	-2₹7	199
38	Hydroprocessing of bio-crude from continuous hydrothermal liquefaction of microalgae. <i>Fuel</i> , 2015 , 159, 197-205	7.1	174
37	Two-stage hydrothermal liquefaction of a high-protein microalga. <i>Algal Research</i> , 2015 , 8, 15-22	5	114
36	Effect of hydrothermal liquefaction aqueous phase recycling on bio-crude yields and composition. <i>Bioresource Technology</i> , 2016 , 220, 190-199	11	103
35	Hydrothermal processing of algal biomass for the production of biofuels and chemicals. <i>Biofuels</i> , 2012 , 3, 603-623	2	99
34	The seasonal variation of fucoidan within three species of brown macroalgae. <i>Algal Research</i> , 2017 , 22, 79-86	5	98
33	Hydrogen production from the catalytic supercritical water gasification of process water generated from hydrothermal liquefaction of microalgae. <i>Fuel</i> , 2016 , 166, 24-28	7.1	86
32	Hydrothermal microwave processing of microalgae as a pre-treatment and extraction technique for bio-fuels and bio-products. <i>Bioresource Technology</i> , 2013 , 136, 188-95	11	76
31	Continuous Hydrothermal Liquefaction of Biomass in a Novel Pilot Plant with Heat Recovery and Hydraulic Oscillation. <i>Energies</i> , 2018 , 11, 2695	3.1	76
30	Pyrolysis GCMS as a novel analysis technique to determine the biochemical composition of microalgae. <i>Algal Research</i> , 2014 , 6, 91-97	5	61
29	Primary sewage sludge filtration using biomass filter aids and subsequent hydrothermal co-liquefaction. <i>Water Research</i> , 2018 , 130, 58-68	12.5	48
28	Hydrothermal co-liquefaction of biomasses [quantitative analysis of bio-crude and aqueous phase composition. <i>Sustainable Energy and Fuels</i> , 2017 , 1, 789-805	5.8	44

(2020-2016)

27	Predicting the Chemical Composition of Aqueous Phase from Hydrothermal Liquefaction of Model Compounds and Biomasses. <i>Energy & Double Supposed Services</i> 2016, 30, 10470-10483	4.1	40	
26	Characterizing Semivolatile Organic Compounds of Biocrude from Hydrothermal Liquefaction of Biomass. <i>Energy & Discourt Senior S</i>	4.1	38	
25	Catalytic hydrotreatment of bio-crude produced from the hydrothermal liquefaction of aspen wood: a catalyst screening and parameter optimization study. <i>Sustainable Energy and Fuels</i> , 2017 , 1, 832	- 5 841	30	
24	Hydrothermal liquefaction of sewage sludge; energy considerations and fate of micropollutants during pilot scale processing. <i>Water Research</i> , 2020 , 183, 116101	12.5	27	
23	Microalgae biorefinery concept based on hydrothermal microwave pyrolysis. <i>Green Chemistry</i> , 2012 , 14, 3251	10	26	
22	Assessing combustion and emission performance of direct use of SVO in a diesel engine by oxygen enrichment of intake air method. <i>Biomass and Bioenergy</i> , 2013 , 51, 43-52	5.3	20	
21	Screening of common synthetic polymers for depolymerization by subcritical hydrothermal liquefaction. <i>Chemical Engineering Research and Design</i> , 2020 , 139, 371-379	5.5	19	
20	Nanoparticles of Pd supported on bacterial biomass for hydroprocessing crude bio-oil. <i>Fuel</i> , 2017 , 209, 449-456	7.1	19	
19	Investigation of the presence of an aliphatic biopolymer in cyanobacteria: Implications for kerogen formation. <i>Organic Geochemistry</i> , 2015 , 81, 64-69	3.1	17	
18	Effect of Multifunctional Fuel Additive Package on Fuel Injector Deposit, Combustion and Emissions using Pure Rape Seed Oil for a DI Diesel. <i>SAE International Journal of Fuels and Lubricants</i> , 2009 , 2, 54-65	1.8	14	
17	Detailed Investigation into the Asphaltene Fraction of Hydrothermal Liquefaction Derived Bio-Crude and Hydrotreated Bio-Crudes. <i>Energy & Description</i> 2018, 32, 3579-3587	4.1	12	
16	Rapid Determination of Water, Total Acid Number, and Phenolic Content in Bio-Crude from Hydrothermal Liquefaction of Biomass using FT-IR. <i>Energy & Energy &</i>	4.1	12	
15	The Influence of Fuel Pre-Heating on Combustion and Emissions with 100% Rapeseed Oil for a DI Diesel Engine 2009 ,		8	
14	Assessment of agricultural crops and natural vegetation in Scotland for energy production by anaerobic digestion and hydrothermal liquefaction. <i>Biomass Conversion and Biorefinery</i> , 2017 , 7, 467-47	7 ^{2.3}	7	
13	Hydrothermal Co-Liquefaction of Synthetic Polymers and Miscanthus giganteus: Synergistic and Antagonistic Effects. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 19051-19061	8.3	7	
12	Production of biofuels via hydrothermal conversion 2016 , 509-547		7	
11	Hydrothermal Liquefaction: A Promising Pathway Towards Renewable Jet Fuel 2018 , 607-635		6	
10	The influence of feedstock characteristics on processability of biosolid slurries for conversion to renewable crude oil via hydrothermal liquefaction. <i>Chemical Engineering Research and Design</i> , 2020 , 162, 284-294	5.5	4	

9	Rheological studies of municipal sewage sludge slurries for hydrothermal liquefaction biorefinery applications. <i>Chemical Engineering Research and Design</i> , 2021 , 166, 148-157	5.5	4
8	Hydrothermal liquefaction aqueous phase treatment and hydrogen production using electro-oxidation. <i>Energy Conversion and Management</i> , 2021 , 244, 114462	10.6	3
7	Hydrothermal liquefaction of aquatic Feedstocks 2018 , 101-125		2
6	Rape Seed Oil B100 Diesel Engine Particulate Emissions: The Influence of Intake Oxygen on Particle Size Distribution 2012 ,		2
5	Distribution of nutrients and phosphorus recovery in hydrothermal liquefaction of waste streams. <i>Biomass and Bioenergy</i> , 2022 , 156, 106323	5.3	2
4	Wet oxidation of aqueous phase from hydrothermal liquefaction of sewage sludge. <i>Water Research</i> , 2021 , 209, 117863	12.5	1
3	Viscosity Variation of Model Compounds during Hydrothermal Liquefaction under Subcritical Conditions of Water. <i>Industrial & Engineering Chemistry Research</i> , 2021 , 60, 980-989	3.9	1
2	Potential Use of Plant Biomass from Treatment Wetland Systems for Producing Biofuels through a Biocrude Green-Biorefining Platform. <i>Energies</i> , 2021 , 14, 8157	3.1	1
1	Combined Hydrothermal Liquefaction of Polyurethane and Lignocellulosic Biomass for Improved Carbon Recovery, Energy & Amp: Fuels 2021, 35, 10630-10640	4.1	О