## **Chris Borgert**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8608674/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Can mode of action predict mixture toxicity for risk assessment?. Toxicology and Applied Pharmacology, 2004, 201, 85-96.                                                                            | 2.8 | 135       |
| 2  | Endocrine disruption: Fact or urban legend?. Toxicology Letters, 2013, 223, 295-305.                                                                                                                | 0.8 | 131       |
| 3  | Review of the toxicity of chemical mixtures: Theory, policy, and regulatory practice. Regulatory<br>Toxicology and Pharmacology, 2006, 45, 119-143.                                                 | 2.7 | 97        |
| 4  | Evaluation of EPA's Tier 1 Endocrine Screening Battery and recommendations for improving the interpretation of screening results. Regulatory Toxicology and Pharmacology, 2011, 59, 397-411.        | 2.7 | 58        |
| 5  | Hypothesis-driven weight of evidence framework for evaluating data within the US EPA's Endocrine<br>Disruptor Screening Program. Regulatory Toxicology and Pharmacology, 2011, 61, 185-191.         | 2.7 | 58        |
| 6  | A critical review of methods for comparing estrogenic activity of endogenous and exogenous<br>chemicals in human milk and infant formula Environmental Health Perspectives, 2003, 111, 1020-1036.   | 6.0 | 51        |
| 7  | Distinguishing between endocrine disruption and non-specific effects on endocrine systems.<br>Regulatory Toxicology and Pharmacology, 2018, 99, 142-158.                                            | 2.7 | 50        |
| 8  | The human relevant potency threshold: Reducing uncertainty by human calibration of cumulative risk assessments. Regulatory Toxicology and Pharmacology, 2012, 62, 313-328.                          | 2.7 | 48        |
| 9  | Potency matters: Thresholds govern endocrine activity. Regulatory Toxicology and Pharmacology, 2013, 67, 83-88.                                                                                     | 2.7 | 48        |
| 10 | Evaluating Chemical Interaction Studies for Mixture Risk Assessment. Human and Ecological Risk<br>Assessment (HERA), 2001, 7, 259-306.                                                              | 3.4 | 46        |
| 11 | Recommended approaches to the scientific evaluation of ecotoxicological hazards and risks of<br>endocrine-active substances. Integrated Environmental Assessment and Management, 2017, 13, 267-279. | 2.9 | 38        |
| 12 | Relevance Weighting of Tier 1 Endocrine Screening Endpoints by Rank Order. Birth Defects Research<br>Part B: Developmental and Reproductive Toxicology, 2014, 101, 90-113.                          | 1.4 | 36        |
| 13 | Information Quality in Regulatory Decision Making: Peer Review versus Good Laboratory Practice.<br>Environmental Health Perspectives, 2012, 120, 927-934.                                           | 6.0 | 33        |
| 14 | Review and recommendations on criteria to evaluate the relevance of pesticide interaction data for ecological risk assessments. Chemosphere, 2018, 209, 124-136.                                    | 8.2 | 31        |
| 15 | A critique of the European Commission Document, "State of the Art Assessment of Endocrine<br>Disrupters― Critical Reviews in Toxicology, 2012, 42, 465-473.                                         | 3.9 | 28        |
| 16 | Synergism, antagonism, or additivity of dietary supplements: Application of theory to case studies.<br>Thrombosis Research, 2005, 117, 123-132.                                                     | 1.7 | 20        |
| 17 | Predicting interactions from mechanistic information: Can omic data validate theories?. Toxicology and Applied Pharmacology, 2007, 223, 114-120.                                                    | 2.8 | 19        |
| 18 | Improving Weight of Evidence Approaches to Chemical Evaluations. Risk Analysis, 2015, 35, 186-192.                                                                                                  | 2.7 | 19        |

CHRIS BORGERT

| #  | Article                                                                                                                                                                                                                                                                                                        | IF        | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|
| 19 | Modernizing problem formulation for risk assessment necessitates articulation of mode of action.<br>Regulatory Toxicology and Pharmacology, 2015, 72, 538-551.                                                                                                                                                 | 2.7       | 19        |
| 20 | Chemical Mixtures: An Unsolvable Riddle?. Human and Ecological Risk Assessment (HERA), 2004, 10, 619-629.                                                                                                                                                                                                      | 3.4       | 18        |
| 21 | Human-relevant potency threshold (HRPT) for ERα agonism. Archives of Toxicology, 2018, 92, 1685-1702.                                                                                                                                                                                                          | 4.2       | 18        |
| 22 | Does GLP enhance the quality of toxicological evidence for regulatory decisions?: TABLE 1<br>Toxicological Sciences, 2016, 151, 206-213.                                                                                                                                                                       | 3.1       | 17        |
| 23 | Evaluation of the Inherent Toxicity Concept in Environmental Toxicology and Risk Assessment.<br>Environmental Toxicology and Chemistry, 2020, 39, 2351-2360.                                                                                                                                                   | 4.3       | 17        |
| 24 | TOPICAL DOSE DELIVERY IN THE REPTILIAN EGG TREATMENT MODEL. Environmental Toxicology and Chemistry, 2007, 26, 914.                                                                                                                                                                                             | 4.3       | 15        |
| 25 | Analysis of EPA's endocrine screening battery and recommendations for further review. Regulatory<br>Toxicology and Pharmacology, 2015, 72, 552-561.                                                                                                                                                            | 2.7       | 14        |
| 26 | Principles of dose-setting in toxicology studies: the importance of kinetics for ensuring human safety.<br>Archives of Toxicology, 2021, 95, 3651-3664.                                                                                                                                                        | 4.2       | 12        |
| 27 | Assessing Toxicity of Mixtures: The Search for Economical Study Designs. Human and Ecological Risk<br>Assessment (HERA), 2002, 8, 305-326.                                                                                                                                                                     | 3.4       | 11        |
| 28 | DOSE VERIFICATION AFTER TOPICAL TREATMENT OF ALLIGATOR (ALLIGATOR MISSISSIPPIENSIS) EGGS.<br>Environmental Toxicology and Chemistry, 2007, 26, 908.                                                                                                                                                            | 4.3       | 11        |
| 29 | The regulatory challenge of chemicals in the environment: Toxicity testing, risk assessment, and decision-making models. Regulatory Toxicology and Pharmacology, 2018, 99, 289-295.                                                                                                                            | 2.7       | 11        |
| 30 | Human exposure to synthetic endocrine disrupting chemicals (S-EDCs) is generally negligible as compared to natural compounds with higher or comparable endocrine activity: how to evaluate the risk of the S-EDCs?. Archives of Toxicology, 2020, 94, 2549-2557.                                               | 4.2       | 11        |
| 31 | Conflict of interest or contravention of science?. Regulatory Toxicology and Pharmacology, 2007, 48, 4-5.                                                                                                                                                                                                      | 2.7       | 10        |
| 32 | Hypothesis-driven weight-of-evidence analysis for the endocrine disruption potential of benzene.<br>Regulatory Toxicology and Pharmacology, 2018, 100, 7-15.                                                                                                                                                   | 2.7       | 9         |
| 33 | Human exposure to synthetic endocrine disrupting chemicals (S-EDCs) is generally negligible as compared to natural compounds with higher or comparable endocrine activity. How to evaluate the risk of the S-EDCs?. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2020, 83, 485.494 | 2.3       | 8         |
| 34 | INTERACTIVE EFFECTS OF p,pâ€2-DICHLORODIPHENYLDICHLOROETHYLENE AND METHOXYCHLOR ON HORMON<br>SYNTHESIS IN LARGEMOUTH BASS OVARIAN CULTURES. Environmental Toxicology and Chemistry, 2004,<br>23, 1947.                                                                                                         | NE<br>4.3 | 7         |
| 35 | Conflict of interest: kill the messenger or follow the data?   Conflict of interest. Environmental<br>Science & Technology, 2007, 41, 665-666.                                                                                                                                                                 | 10.0      | 5         |
| 36 | Human exposure to synthetic endocrine disrupting chemicals (S-EDCs) is generally negligible as compared to natural compounds with higher or comparable endocrine activity. How to evaluate the risk of the S-EDCs?. Chemico-Biological Interactions, 2020, 326, 109099.                                        | 4.0       | 5         |

CHRIS BORGERT

| #  | Article                                                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Human exposure to synthetic endocrine disrupting chemicals (S-EDCs) is generally negligible as compared to natural compounds with higher or comparable endocrine activity. How to evaluate the risk of the S-EDCs?. Toxicology in Vitro, 2020, 67, 104861.                       | 2.4  | 5         |
| 38 | Data Disclosure for Chemical Evaluations. Environmental Health Perspectives, 2013, 121, 145-148.                                                                                                                                                                                 | 6.0  | 4         |
| 39 | Response to Kortenkamp et al. Rebuttal. Critical Reviews in Toxicology, 2012, 42, 790-791.                                                                                                                                                                                       | 3.9  | 3         |
| 40 | Comment on "Mode of Action (MOA) Assignment Classifications for Ecotoxicology: An Evaluation of Approaches― Environmental Science & Technology, 2017, 51, 13509-13510.                                                                                                           | 10.0 | 3         |
| 41 | A novel approach to calculating the kinetically derived maximum dose. Archives of Toxicology, 2022, 96, 809-816.                                                                                                                                                                 | 4.2  | 2         |
| 42 | Human exposure to synthetic endocrine disrupting chemicals (S-EDCs) is generally negligible as compared to natural compounds with higher or comparable endocrine activity. How to evaluate the risk of the S-EDCs?. Toxicology Letters, 2020, 331, 259-264.                      | 0.8  | 1         |
| 43 | Human exposure to synthetic endocrine disrupting chemicals (S-EDCs) is generally negligible as compared to natural compounds with higher or comparable endocrine activity. How to evaluate the risk of the S-EDCs?. Environmental Toxicology and Pharmacology, 2020, 78, 103396. | 4.0  | 1         |
| 44 | Human exposure to synthetic endocrine disrupting chemicals (S-EDCs) is generally negligible as compared to natural compounds with higher or comparable endocrine activity. How to evaluate the risk of the S-EDCs?. Food and Chemical Toxicology, 2020, 142, 111349.             | 3.6  | 1         |
| 45 | Reproductive Toxicology. , 0, , 207-238.                                                                                                                                                                                                                                         |      | 0         |
| 46 | Are all current ecotoxicity test results confounded by design and implementation issues?. Integrated Environmental Assessment and Management, 2016, 12, 397-398.                                                                                                                 | 2.9  | 0         |