Gorachand Dutta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8608240/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enzyme-free electrochemical immunosensor based on methylene blue and the electro-oxidation of hydrazine on Pt nanoparticles. Biosensors and Bioelectronics, 2017, 92, 372-377.	10.1	59
2	Low-Interference Washing-Free Electrochemical Immunosensor Using Glycerol-3-phosphate Dehydrogenase as an Enzyme Label. Analytical Chemistry, 2015, 87, 3574-3578.	6.5	56
3	Washing-Free Heterogeneous Immunosensor Using Proximity-Dependent Electron Mediation between an Enzyme Label and an Electrode. Analytical Chemistry, 2014, 86, 4589-4595.	6.5	52
4	A comprehensive review on current COVID-19 detection methods: From lab care to point of care diagnosis. Sensors International, 2021, 2, 100119.	8.4	41
5	Redox cycling-amplified enzymatic Ag deposition and its application in the highly sensitive detection of creatine kinase-MB. Chemical Communications, 2015, 51, 14493-14496.	4.1	39
6	Microfluidic Devices for Label-Free DNA Detection. Chemosensors, 2018, 6, 43.	3.6	38
7	An ultrasensitive enzyme-free electrochemical immunosensor based on redox cycling amplification using methylene blue. Analyst, The, 2017, 142, 3492-3499.	3.5	37
8	Enzyme-assisted glucose quantification for a painless Lab-on-PCB patch implementation. Biosensors and Bioelectronics, 2020, 167, 112484.	10.1	32
9	Wash-free, label-free immunoassay for rapid electrochemical detection of PfHRP2 in whole blood samples. Scientific Reports, 2018, 8, 17129.	3.3	30
10	From photosynthesis to biosensing: Chlorophyll proves to be a versatile molecule. Sensors International, 2020, 1, 100058.	8.4	29
11	Electrochemical Biosensors for Cytokine Profiling: Recent Advancements and Possibilities in the Near Future. Biosensors, 2021, 11, 94.	4.7	27
12	Label-Free Electrochemical Detection of S. mutans Exploiting Commercially Fabricated Printed Circuit Board Sensing Electrodes. Micromachines, 2019, 10, 575.	2.9	24
13	Aptamer-based biosensors and their implications in COVID-19 diagnosis. Analytical Methods, 2021, 13, 5400-5417.	2.7	23
14	An asymmetric dinuclear copper(II) complex with phenoxo and acetate bridges: Synthesis, structure and magnetic studies. Polyhedron, 2011, 30, 293-298.	2.2	19
15	Sensitive electrochemical detection of vaccinia virus in a solution containing a high concentration of <scp>l</scp> -ascorbic acid. Analyst, The, 2015, 140, 5481-5487.	3.5	19
16	Commercially Fabricated Printed Circuit Board Sensing Electrodes for Biomarker Electrochemical Detection: The Importance of Electrode Surface Characteristics in Sensor Performance. Proceedings (mdpi), 2018, 2, .	0.2	16
17	A concentration dependent auto-relay-recognition by the same analyte: a dual fluorescence switch-on by hydrogen sulfide via Michael addition followed by reduction and staining for bio-activity. Organic and Biomolecular Chemistry, 2016, 14, 570-576.	2.8	14
18	Electrochemical biosensors for rapid detection of malaria. Materials Science for Energy Technologies, 2020, 3, 150-158.	1.8	10

GORACHAND DUTTA

#	Article	IF	CITATIONS
19	Time-dependent decrease in the enhanced electrocatalytic activities observed after three different pretreatments of gold electrodes. Journal of Electroanalytical Chemistry, 2012, 675, 41-46.	3.8	9
20	Effect of Fenton's reagent on the electrocatalytic activity of gold nanoparticles. Electrochemistry Communications, 2011, 13, 1328-1331.	4.7	8
21	Improvement of the electrocatalytic activities of long-aged Pt electrodes and the change of the improved activities with aging. Electrochimica Acta, 2014, 141, 319-323.	5.2	6
22	Sensing Soluble Immune Checkpoint Molecules and Disease-Relevant Cytokines in Cancer: A Novel Paradigm in Disease Diagnosis and Monitoring. Frontiers in Sensors, 2022, 3, .	3.3	6
23	Towards self-powered and autonomous wearable glucose sensor. , 2018, , .		5
24	Emerging evidence for serum procalcitonin estimation at point-of-care and advancement in quantitative sensing strategies over the past decade. Sensors International, 2021, 2, 100107.	8.4	5
25	Nanobiosensor-Based Diagnostic System: Transducers and Surface Materials. , 2020, , 1-13.		5
26	Immunological profiling and development of a sensing device for detection of IL-13 in COPD and asthma. Bioelectrochemistry, 2022, 143, 107971.	4.6	5
27	Advanced integrative sensing technologies for detection of drug-resistant tuberculosis in point-of-care settings. Sensors International, 2020, 1, 100036.	8.4	4
28	Effects of Aging on Electrocatalytic Activities of Pt and Pd Nanoparticles. Journal of Electrochemical Science and Technology, 2016, 7, 27-32.	2.2	2
29	Effects of Aging on Electrocatalytic Activities of Pt and Pd Nanoparticles. Journal of Electrochemical Science and Technology, 2016, 7, 27-32.	2.2	2
30	Facile decrease in the electron-transfer rate and surface roughness of gold by ultrasonic treatment. Chemical Communications, 2012, 48, 8841.	4.1	1
31	Electrochemical Redox Cycling Amplification Technology for Point-of-Care Cancer Diagnosis. , 2017, , 133-154.		1
32	Redox Cycling Technologies for Point-of-Care Immunodiagnostics in Various Matrices. , 2021, , 75-91.		1
33	Current Methods and Future of Tuberculosis (TB) Diagnosis. Studies in Systems, Decision and Control, 2021, , 163-182.	1.0	0