Jeffrey A Loeb

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8608076/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modulation of locomotor behaviors by location-specific epileptic spiking and seizures. Epilepsy and Behavior, 2021, 114, 107652.	1.7	2
2	Consensus Statement for the Management and Treatment of Sturge-Weber Syndrome: Neurology, Neuroimaging, and Ophthalmology Recommendations. Pediatric Neurology, 2021, 121, 59-66.	2.1	19
3	Highly consistent temporal lobe interictal spike networks revealed from foramen ovale electrodes. Clinical Neurophysiology, 2021, 132, 2065-2074.	1.5	7
4	Identifying targets for preventing epilepsy using systems biology of the human brain. Neuropharmacology, 2020, 168, 107757.	4.1	14
5	Disease propagation in amyotrophic lateral sclerosis (ALS): an interplay between genetics and environment. Journal of Neuroinflammation, 2020, 17, 175.	7.2	7
6	Enhancing epilepsy self-management and quality of life for adults with epilepsy with varying social and educational backgrounds using PAUSE to Learn Your Epilepsy. Epilepsy and Behavior, 2020, 111, 107228.	1.7	18
7	Unique Characteristics of Epilepsy Development in Neurocysticercosis. American Journal of Tropical Medicine and Hygiene, 2020, 103, 639-645.	1.4	19
8	Sturge-Weber Syndrome Patient Registry: Delayed Diagnosis and Poor Seizure Control. Journal of Pediatrics, 2019, 215, 158-163.e6.	1.8	10
9	Self-management skills and behaviors, self-efficacy, and quality of life in people with epilepsy from underserved populations. Epilepsy and Behavior, 2019, 98, 258-265.	1.7	19
10	Neurological Complications of Sturge-Weber Syndrome: Current Status and Unmet Needs. Pediatric Neurology, 2019, 98, 31-38.	2.1	17
11	Mutant SOD1 prevents normal functional recovery through enhanced glial activation and loss of motor neuron innervation after peripheral nerve injury. Neurobiology of Disease, 2019, 124, 469-478.	4.4	16
12	Interictal spike connectivity in human epileptic neocortex. Clinical Neurophysiology, 2019, 130, 270-279.	1.5	21
13	Slowing disease progression in the SOD1 mouse model of ALS by blocking neuregulin-induced microglial activation. Neurobiology of Disease, 2018, 111, 118-126.	4.4	18
14	A Multidisciplinary Consensus for Clinical Care and Research Needs for Sturge-Weber Syndrome. Pediatric Neurology, 2018, 84, 11-20.	2.1	42
15	Proteomic analysis of human epileptic neocortex predicts vascular and glial changes in epileptic regions. PLoS ONE, 2018, 13, e0195639.	2.5	30
16	The long non-coding RNA NEAT1 is responsive to neuronal activity and is associated with hyperexcitability states. Scientific Reports, 2017, 7, 40127.	3.3	92
17	Neuregulin1 fineâ€ŧunes preâ€; postâ€; and perisynaptic neuromuscular junction development. Developmental Dynamics, 2017, 246, 368-380.	1.8	14
18	WONOEP appraisal: Development of epilepsy biomarkers—What we can learn from our patients?. Epilepsia, 2017, 58, 951-961.	5.1	13

JEFFREY A LOEB

#	Article	IF	CITATIONS
19	Altered metabolomic–genomic signature: A potential noninvasive biomarker of epilepsy. Epilepsia, 2017, 58, 1626-1636.	5.1	24
20	In response: Multifactorial basis of epilepsy in patients with neurocysticercosis. Epilepsia, 2015, 56, 975-976.	5.1	1
21	Epilepsy spectrum disorders: A concept in need of validation or refutation. Medical Hypotheses, 2015, 85, 656-663.	1.5	8
22	Predicting novel histopathological microlesions in human epileptic brain through transcriptional clustering. Brain, 2015, 138, 356-370.	7.6	54
23	Enhanced slow waves at the periphery of human epileptic foci. Clinical Neurophysiology, 2015, 126, 1117-1123.	1.5	12
24	Coalescence of deep and superficial epileptic foci into larger discharge units in adult rat neocortex. Neuroscience, 2015, 292, 148-158.	2.3	5
25	Rapid transient isoform-specific neuregulin1 transcription in motor neurons is regulated by neurotrophic factors and axon–target interactions. Molecular and Cellular Neurosciences, 2015, 68, 73-81.	2.2	11
26	Activation of microglial neuregulin1 signaling in the corticospinal tracts of ALS patients with upper motor neuron signs. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2014, 15, 77-83.	1.7	13
27	Aberrant Neuregulin 1 Signaling in Amyotrophic Lateral Sclerosis. Journal of Neuropathology and Experimental Neurology, 2012, 71, 104-115.	1.7	62
28	High inter-reviewer variability of spike detection on intracranial EEG addressed by an automated multi-channel algorithm. Clinical Neurophysiology, 2012, 123, 1088-1095.	1.5	80
29	Electrical, molecular and behavioral effects of interictal spiking in the rat. Neurobiology of Disease, 2012, 47, 92-101.	4.4	40
30	Identifying targets for preventing epilepsy using systems biology. Neuroscience Letters, 2011, 497, 205-212.	2.1	47
31	Critical Period of Axoglial Signaling between Neuregulin-1 and Brain-Derived Neurotrophic Factor Required for Early Schwann Cell Survival and Differentiation. Journal of Neuroscience, 2011, 31, 9630-9640.	3.6	42
32	Neuregulin-ErbB Signaling Promotes Microglial Proliferation and Chemotaxis Contributing to Microgliosis and Pain after Peripheral Nerve Injury. Journal of Neuroscience, 2010, 30, 5437-5450.	3.6	151
33	Targeting Human Epidermal Growth Factor Receptor Signaling with the Neuregulin's Heparin-binding Domain. Journal of Biological Chemistry, 2009, 284, 32108-32115.	3.4	25
34	Neuroprotection and repair by neurotrophic and gliotrophic factors in multiple sclerosis. Neurology, 2007, 68, S38-S42.	1.1	20
35	Brain calcifications induce neurological dysfunction that can be reversed by a bone drug. Journal of the Neurological Sciences, 2006, 243, 77-81.	0.6	37
36	Neuregulins: Versatile growth and differentiation factors in nervous system development and human disease. Brain Research Reviews, 2006, 51, 161-175.	9.0	133

JEFFREY A LOEB

#	Article	IF	CITATIONS
37	Specific Structural Features of Heparan Sulfate Proteoglycans Potentiate Neuregulin-1 Signaling. Journal of Biological Chemistry, 2005, 280, 383-388.	3.4	43
38	Rapid Axoglial Signaling Mediated by Neuregulin and Neurotrophic Factors. Journal of Neuroscience, 2004, 24, 6218-6227.	3.6	90
39	Synergistic effects of neuregulin and agrin on muscle acetylcholine receptor expression. Molecular and Cellular Neurosciences, 2004, 26, 558-569.	2.2	15
40	Neuregulin: An activity-dependent synaptic modulator at the neuromuscular junction. Journal of Neurocytology, 2003, 32, 649-664.	1.5	25
41	Neuregulin Expression at Neuromuscular Synapses Is Modulated by Synaptic Activity and Neurotrophic Factors. Journal of Neuroscience, 2002, 22, 2206-2214.	3.6	79
42	Neuregulin-Heparan-sulfate Proteoglycan Interactions Produce Sustained erbB Receptor Activation Required for the Induction of Acetylcholine Receptors in Muscle. Journal of Biological Chemistry, 2001, 276, 38068-38075.	3.4	74