Gang Chen

List of Publications by Citations

Source: https://exaly.com/author-pdf/8607579/gang-chen-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

41 2,930 23 43 g-index

43 3,336 10.1 5.14 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
41	Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential. <i>Nature Communications</i> , 2018 , 9, 1795	17.4	456
40	Measuring ensemble-averaged surface-enhanced Raman scattering in the hotspots of colloidal nanoparticle dimers and trimers. <i>Journal of the American Chemical Society</i> , 2010 , 132, 3644-5	16.4	354
39	High-purity separation of gold nanoparticle dimers and trimers. <i>Journal of the American Chemical Society</i> , 2009 , 131, 4218-9	16.4	246
38	Ambient Electrochemical Ammonia Synthesis with High Selectivity on Fe/Fe Oxide Catalyst. <i>ACS Catalysis</i> , 2018 , 8, 9312-9319	13.1	178
37	Hotspot-induced transformation of surface-enhanced Raman scattering fingerprints. <i>ACS Nano</i> , 2010 , 4, 3087-94	16.7	172
36	Scalable Routes to Janus AuBiO2 and Ternary AgAuBiO2 Nanoparticles. <i>Chemistry of Materials</i> , 2010 , 22, 3826-3828	9.6	145
35	A systems approach towards the stoichiometry-controlled hetero-assembly of nanoparticles. <i>Nature Communications</i> , 2010 , 1, 87	17.4	136
34	Mechanistic investigation into the spontaneous linear assembly of gold nanospheres. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 11850-60	3.6	131
33	Bipyramid-templated synthesis of monodisperse anisotropic gold nanocrystals. <i>Nature Communications</i> , 2015 , 6, 7571	17.4	108
32	Study of structure, tribological properties and growth mechanism of DLC and nitrogen-doped DLC films deposited by electrochemical technique. <i>Applied Surface Science</i> , 2004 , 236, 328-335	6.7	105
31	Enzymatic synthesis of periodic DNA nanoribbons for intracellular pH sensing and gene silencing. Journal of the American Chemical Society, 2015 , 137, 3844-51	16.4	97
30	Regioselective surface encoding of nanoparticles for programmable self-assembly. <i>Nature Materials</i> , 2019 , 18, 169-174	27	94
29	Chiral transformation: from single nanowire to double helix. <i>Journal of the American Chemical Society</i> , 2011 , 133, 20060-3	16.4	87
28	Fabrication of polymer nanocavities with tailored openings. ACS Nano, 2009, 3, 3469-74	16.7	85
27	Preparation and characterization of electrochemically deposited carbon nitride films on silicon substrate. <i>Journal Physics D: Applied Physics</i> , 2004 , 37, 907-913	3	72
26	Construction of Long Narrow Gaps in Ag Nanoplates. <i>Journal of the American Chemical Society</i> , 2018 , 140, 15560-15563	16.4	66
25	Toroidal micelles of polystyrene- block -poly(acrylic acid). <i>Small</i> , 2011 , 7, 2721-6	11	54

(2005-2004)

24	Effect of deposition voltage on the microstructure of electrochemically deposited hydrogenated amorphous carbon films. <i>Carbon</i> , 2004 , 42, 3103-3108	10.4	37
23	Synthesis of silicon carbide nitride nanocomposite films by a simple electrochemical method. <i>Electrochemistry Communications</i> , 2006 , 8, 737-740	5.1	34
22	A novel method for the synthesis of Au nanoparticles incorporated amorphous hydrogenated carbon films. <i>Electrochemistry Communications</i> , 2007 , 9, 1053-1056	5.1	33
21	Fabrication of hydrophobic fluorinated amorphous carbon thin films by an electrochemical route. <i>Electrochemistry Communications</i> , 2008 , 10, 7-11	5.1	29
20	Creating complex molecular topologies by configuring DNA four-way junctions. <i>Nature Chemistry</i> , 2016 , 8, 907-14	17.6	27
19	Synthesis and characterization of high voltage electrodeposited phosphorus doped DLC films. <i>Electrochemistry Communications</i> , 2008 , 10, 461-465	5.1	24
18	Branched kissing loops for the construction of diverse RNA homooligomeric nanostructures. <i>Nature Chemistry</i> , 2020 , 12, 249-259	17.6	20
17	Fabrication of carbon spheres on a-C:H films by heat-treatment of a polymer precursor. <i>Carbon</i> , 2004 , 42, 2769-2771	10.4	20
16	Synthesizing topological structures containing RNA. <i>Nature Communications</i> , 2017 , 8, 14936	17.4	18
15	Facile synthesis of CNTs-doped diamond-like carbon film by electrodeposition. <i>Surface and Coatings Technology</i> , 2008 , 202, 5943-5946	4.4	17
14	Dual Role of Polyaniline for Achieving Ag Dendrites and Enhancing Its Oxygen Reduction Reaction Catalytic Activity. <i>ChemistrySelect</i> , 2017 , 2, 10300-10303	1.8	13
13	Synthesis of diamond-like carbon/nanosilica composite films by an electrochemical method. <i>Electrochemistry Communications</i> , 2004 , 6, 1159-1162	5.1	12
12	Field-emission properties of diamond-like-carbon and nitrogen-doped diamond-like-carbon films prepared by electrochemical deposition. <i>Applied Physics A: Materials Science and Processing</i> , 2005 , 81, 41-46	2.6	12
11	Synthesis of C60 nanoparticle doped hard carbon film by electrodeposition. <i>Carbon</i> , 2008 , 46, 1095-109	710.4	10
10	Ultrasensitive Visual Detection of Glucose in Urine Based on the Iodide-Promoted Etching of Gold Bipyramids. <i>ACS Applied Materials & Acs Applied & Acs Applie</i>	9.5	9
9	Mo0.42C0.58 Nanoparticles Embedded in Nitrogen-Doped Carbon as Electrocatalyst towards Oxygen Reduction Reaction. <i>ChemistrySelect</i> , 2018 , 3, 5106-5112	1.8	9
8	pH Regulated Synthesis of Monodisperse Penta-Twinned Gold Nanoparticles with High Yield. <i>Chemistry of Materials</i> , 2020 , 32, 5626-5633	9.6	8
7	Preparation and characterization of amorphous hydrogenated carbon films containing Au nanoparticles from heat-treatment of polymer precursors. <i>Applied Physics A: Materials Science and Processing</i> , 2005 , 81, 197-203	2.6	4

6	Fabrication of oriented FePt nanoparticles embedded in a carbon film made by pyrolysis of poly(phenylcarbyne). <i>Carbon</i> , 2004 , 42, 3021-3024	10.4	2
5	Radiative Decay Rate Enhancement and Quenching for Multiple Emitters near a Metal Nanoparticle Surface. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 2531-2536	3.8	2
4	High purity separation of nanoparticle dimers and trimers for SERS hot spots 2010,		1
3	Polymer-assisted synthesis of aligned amorphous silicon nanowires and their core/shell structures with Au nanoparticles. <i>Chemical Physics Letters</i> , 2004 , 397, 128-132	2.5	1
2	Synthesis of Homogeneous Gold Nanorods through the Optimized Multi-step Seed-Mediated Growth Method. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 13350-13360	3.8	1
1	pH-mediated synthesis of monodisperse gold nanorods with quantitative yield and molecular level insight. <i>Nano Research</i> , 2021 , 14, 1167-1174	10	1