Alexandre M Fuentefria

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8607501/publications.pdf Version: 2024-02-01

		257101	344852
121	2,000	24	36
papers	citations	h-index	g-index
121	121	121	2964
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	8â€hydroxyquinoline and quinazoline derivatives as potential new alternatives to combat <i>Candida</i> spp. biofilm. Letters in Applied Microbiology, 2022, 74, 395-404.	1.0	4
2	Digital images coupled to PLS regression for pH prediction in sterile culture medium. Biomedical Signal Processing and Control, 2022, 73, 103435.	3.5	1
3	Fungicide Resistance in Fusarium graminearum Species Complex. Current Microbiology, 2022, 79, 62.	1.0	28
4	Antifungal Activity and Stability of Fluconazole Emulsion Containing Ionic Liquids Explained by Intermolecular Interactions. Pharmaceutics, 2022, 14, 710.	2.0	1
5	Antibacterial and synergistic activity of a new 8-hydroxyquinoline derivative against methicillin-resistant <i>Staphylococcus aureus</i> . Future Microbiology, 2022, 17, 425-436.	1.0	2
6	Essential oil and residual distillation water of <i>Pterocaulon polystachyum</i> DC:Âcomposition, antifungal activity, and mathematical modeling of steam distillation. Plant Biosystems, 2022, 156, 1470-1477.	0.8	1
7	A chloroacetamide derivative as a potent candidate for fusariosis treatment. Brazilian Journal of Microbiology, 2022, 53, 1289-1295.	0.8	1
8	The influence of the microwave oven on the production of solid culture medium and quality of microbial growth. Anais Da Academia Brasileira De Ciencias, 2022, 94, .	0.3	3
9	<i>In vivo</i> protection of the marjoram (<i>Origanum majorana</i> Linn.) essential oil in the cutaneous sporotrichosis by <i>Sporothrix brasiliensis</i> . Natural Product Research, 2021, 35, 2977-2981.	1.0	10
10	In vitro pharmacokinetics/pharmacodynamics modeling and efficacy against systemic candidiasis in Drosophila melanogaster of a bisaryloxypropanamine derivative. Medical Mycology, 2021, 59, 58-66.	0.3	1
11	Antifungal resistance on Sporothrix species: an overview. Brazilian Journal of Microbiology, 2021, 52, 73-80.	0.8	30
12	8-Hydroxyquinoline 1,2,3-triazole derivatives with promising and selective antifungal activity. Medical Mycology, 2021, 59, 431-440.	0.3	8
13	Antifungal activity and toxicological parameters of 8â€hydroxyquinolineâ€5â€sulfonamides using alternative animal models. Journal of Applied Microbiology, 2021, 130, 1925-1934.	1.4	8
14	New 8-hydroxyquinoline derivatives highlight the potential of this class for treatment of fungal infections. New Journal of Chemistry, 2021, 45, 18158-18170.	1.4	6
15	The efficacy of 8â€hydroxyquinoline derivatives in controlling the fungus <i>llyonectria liriodendri</i> , the causative agent of black foot disease in grapevines. Journal of Applied Microbiology, 2021, 131, 1440-1451.	1.4	5
16	Occurrence and impact of fungicides residues on fermentation during wine production– A review. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2021, 38, 943-961.	1.1	20
17	Ex vivo potential of a quinoline-derivative nail lacquer as a new alternative for dermatophytic onychomycosis treatment. Journal of Medical Microbiology, 2021, 70, .	0.7	2
18	Antimicrobial and Toxicity Evaluation of Imidazolium-Based Dicationic Ionic Liquids with Dicarboxylate Anions. Pharmaceutics, 2021, 13, 639.	2.0	10

Alexandre M Fuentefria

#	Article	IF	CITATIONS
19	Evaluation of activity and toxicity of combining clioquinol with ciclopirox and terbinafine in alternative models of dermatophytosis. Mycoses, 2021, 64, 727-733.	1.8	4
20	Glass ionomer cement modified by a imidazolium salt: adding antifungal properties to a biomaterial. Brazilian Journal of Microbiology, 2021, 52, 1347-1352.	0.8	0
21	Antifungal Efficacy and Safety of Cycloheximide as a Supplement in Optisol-GS. Drug Design, Development and Therapy, 2021, Volume 15, 2091-2098.	2.0	9
22	8-hydroxyquinoline-5-(N-4-chlorophenyl) sulfonamide and fluconazole combination as a preventive strategy for Candida biofilm in haemodialysis devices. Journal of Medical Microbiology, 2021, 70, .	0.7	2
23	Curve fitting and linearization of UV–Vis spectrophotometric measurements to estimate yeast in inoculum preparation. Analytical Biochemistry, 2021, 625, 114216.	1.1	5
24	A Filmâ€Forming System Hybridized with a Nanostructured Chloroacetamide Derivative for Dermatophytosis Treatment. ChemistrySelect, 2021, 6, 8527-8531.	0.7	0
25	Diversity of Fusarium species causing invasive and disseminated infections. Journal De Mycologie Medicale, 2021, 31, 101137.	0.7	6
26	Evaluation of culture media and conditions of Amazonian filamentous fungi in an antimicrobial screening program. Research, Society and Development, 2021, 10, e370101422065.	0.0	0
27	Novel Antimicrobial 8-Hydroxyquinoline-Based Agents: Current Development, Structure–Activity Relationships, and Perspectives. Journal of Medicinal Chemistry, 2021, 64, 16349-16379.	2.9	34
28	Discovery of a novel and selective fungicide that targets fungal cell wall to treat dermatomycoses: 1,3â€bis(3,4â€dichlorophenoxy)propanâ€2â€aminium chloride. Mycoses, 2020, 63, 197-211.	1.8	5
29	8â€Hydroxyquinolineâ€5â€sulfonamides are promising antifungal candidates for the topical treatment of dermatomycosis. Journal of Applied Microbiology, 2020, 128, 1038-1049.	1.4	16
30	Human metabolite-derived alkylsuccinate/dilinoleate copolymers: from synthesis to application. Journal of Materials Chemistry B, 2020, 8, 9980-9996.	2.9	3
31	Allylic Selenocyanates as Antifungal Agents Against Pathogenic Candida Species. ChemistrySelect, 2020, 5, 10495-10500.	0.7	0
32	Synergistic association of clioquinol with antifungal drugs against biofilm forms of clinical <i>Fusarium</i> isolates. Mycoses, 2020, 63, 1069-1082.	1.8	8
33	Quinolines derivatives as promising new antifungal candidates for the treatment of candidiasis and dermatophytosis. Brazilian Journal of Microbiology, 2020, 51, 1691-1701.	0.8	22
34	Fumonisin B1 induces toxicity in human leukocytes at low concentrations: Are computational studies effective to determine biosafety?. Toxicon, 2020, 182, 7-12.	0.8	3
35	In vitro antidermatophytic synergism of double and triple combination of clioquinol with ciclopirox and terbinafine. Mycoses, 2020, 63, 993-1001.	1.8	14
36	Topical delivery of antifungal Brazilian red propolis benzophenones-rich extract by means of cationic lipid nanoemulsions optimized by means of Box-Behnken Design. Journal of Drug Delivery Science and Technology, 2020, 56, 101573.	1.4	12

#	Article	IF	CITATIONS
37	Rational selection of antifungal drugs to propose a new formulation strategy to control Candida biofilm formation on venous catheters. Brazilian Journal of Microbiology, 2020, 51, 1037-1049.	0.8	6
38	Ex vivo nail infection as an effective preclinical method for screening of new topical antifungals. Journal De Mycologie Medicale, 2020, 30, 100938.	0.7	3
39	A chitosan hydrogel-thickened nanoemulsion containing Pelargonium graveolens essential oil for treatment of vaginal candidiasis. Journal of Drug Delivery Science and Technology, 2020, 56, 101527.	1.4	28
40	Human fusariosis: An emerging infection that is difficult to treat. Revista Da Sociedade Brasileira De Medicina Tropical, 2020, 53, e20200013.	0.4	63
41	Influence of detergents and sodium hypochlorite on Yarrowia lipolytica biofilms in utensils used in industrial production of colonial cheese. Anais Da Academia Brasileira De Ciencias, 2020, 92, e20181379.	0.3	Ο
42	New insights into the mechanism of antifungal action of 8-hydroxyquinolines. Saudi Pharmaceutical Journal, 2019, 27, 41-48.	1.2	50
43	Antichemotactic and Antifungal Action of the Essential Oils from <i>Cryptocarya aschersoniana</i> , <i>Schinus terebinthifolia</i> , and <i>Cinnamomum amoenum</i> . Chemistry and Biodiversity, 2019, 16, e1900204.	1.0	16
44	Fungal infection models: Current progress of <i>ex vivo</i> methods. Mycoses, 2019, 62, 860-873.	1.8	11
45	Design, synthesis, and evaluation of novel 2-substituted 1,4-benzenediol library as antimicrobial agents against clinically relevant pathogens. Saudi Pharmaceutical Journal, 2019, 27, 1064-1074.	1.2	3
46	3-Selenocyanate-indoles as new agents for the treatment of superficial and mucocutaneous infections. New Journal of Chemistry, 2019, 43, 926-933.	1.4	13
47	Microbial transformation of ambrisentan to its glycosides by Cunninghamella elegans. Biomedical Chromatography, 2019, 33, e4496.	0.8	4
48	Chloroacetamide derivatives as a promising topical treatment for fungal skin infections. Mycologia, 2019, 111, 612-623.	0.8	7
49	Influence of Monoterpenes in Biological Activities of Nectandra megapotamica (Spreng.) Mez Essential Oils. Biomolecules, 2019, 9, 112.	1.8	10
50	Structure-based design of δ-lactones for new antifungal drug development: susceptibility, mechanism of action, and toxicity. Folia Microbiologica, 2019, 64, 509-519.	1.1	3
51	Lipid core nanoparticles as a broad strategy to reverse fluconazole resistance in multiple Candida species. Colloids and Surfaces B: Biointerfaces, 2019, 175, 523-529.	2.5	36
52	Oral clioquinol is effective in the treatment of a fly model of Candida systemic infection. Mycoses, 2019, 62, 475-481.	1.8	8
53	Rapid tools to gain insights into the interaction dynamics of new 8â€hydroxyquinolines with few fungal lines. Chemical Biology and Drug Design, 2019, 93, 1186-1196.	1.5	17
54	Epidemiological aspects and characterization of the resistance profile of Fusarium spp. in patients with invasive fusariosis. Journal of Medical Microbiology, 2019, 68, 1489-1496.	0.7	19

#	Article	IF	CITATIONS
55	Fusarium riograndense sp. nov., a new species in the FusariumÂsolani species complex causing fungal rhinosinusitis. Journal De Mycologie Medicale, 2018, 28, 29-35.	0.7	7
56	Antifungal Susceptibility, Morphological and Molecular Characterization of Lasiodiplodia theobromae Isolated from a Patient with Keratitis. Mycopathologia, 2018, 183, 565-571.	1.3	8
57	Polyprenylated benzophenone-enriched extracts obtained using SC–CO2 from the dry ethanolic extract of Brazilian red propolis. Separation Science and Technology, 2018, 53, 1724-1731.	1.3	9
58	Antifungals discovery: an insight into new strategies to combat antifungal resistance. Letters in Applied Microbiology, 2018, 66, 2-13.	1.0	127
59	Nanoemulsion Improves the Antifungal Activity of Allylic Thiocyanates against Yeasts and Filamentous Pathogenic Fungi. ChemistrySelect, 2018, 3, 11663-11670.	0.7	14
60	UPLC-MS for Identification of Quercetin Derivatives in Cuphea glutinosa Cham. & Schltdl (Lythraceae) and Evaluation of Antifungal Potential. Current Pharmaceutical Analysis, 2018, 14, 586-594.	0.3	11
61	In Vitro additive effect on griseofulvin and terbinafine combinations against multidrug-resistant dermatophytes. Brazilian Journal of Pharmaceutical Sciences, 2018, 54, .	1.2	7
62	Poiretia latifolia essential oil as a promising antifungal and anti-inflammatory agent: Chemical composition, biological screening, and development of a nanoemulsion formulation. Industrial Crops and Products, 2018, 126, 280-286.	2.5	15
63	In vitro susceptibility and multilocus sequence typing of Fusarium isolates causing keratitis. Journal De Mycologie Medicale, 2018, 28, 482-485.	0.7	13
64	Antifungal mechanism of action of <i>Schinus lentiscifolius</i> Marchand essential oil and its synergistic effect <i>in vitro</i> with terbinafine and ciclopirox against dermatophytes. Journal of Pharmacy and Pharmacology, 2018, 70, 1216-1227.	1.2	27
65	Clioquinol is a promising preventive morphological switching compound in the treatment of Candida infections linked to the use of intrauterine devices. Journal of Medical Microbiology, 2018, 67, 1655-1663.	0.7	13
66	<i>In vitro</i> synergism of a water insoluble fraction of <i>Uncaria tomentosa</i> combined with fluconazole and terbinafine against resistant non- <i>Candida albicans</i> isolates. Pharmaceutical Biology, 2017, 55, 406-415.	1.3	11
67	Evaluation of 8-Hydroxyquinoline Derivatives as Hits for Antifungal Drug Design. Medical Mycology, 2017, 55, 763-773.	0.3	45
68	Assessing the performance of copaiba oil and allantoin nanoparticles on multidrug-resistant Candida parapsilosis. Journal of Drug Delivery Science and Technology, 2017, 40, 59-65.	1.4	9
69	Chemosensitization of filamentous fungi to antifungal agents using Nectandra Rol. ex Rottb. species essential oils. Industrial Crops and Products, 2017, 102, 7-15.	2.5	20
70	Anti-dermatophyte activity of Leguminosae plants from Southern Brazil with emphasis on Mimosa pigra (Leguminosae). Journal De Mycologie Medicale, 2017, 27, 530-538.	0.7	10
71	Differentiation of Candida albicans , Candida glabrata , and Candida krusei by FT-IR and chemometrics by CHROMagarâ,,¢ Candida. Journal of Microbiological Methods, 2017, 141, 121-125.	0.7	9
72	Genetic diversity and antifungal susceptibility of <i>Fusarium</i> isolates in onychomycosis. Mycoses, 2017, 60, 616-622.	1.8	25

#	Article	IF	CITATIONS
73	Biofilm formation by Microsporum canis. Clinical Microbiology and Infection, 2017, 23, 941-942.	2.8	17
74	Synergistic antifungal activity of the lipophilic fraction of Hypericum carinatum and fluconazole. Revista Brasileira De Farmacognosia, 2017, 27, 118-123.	0.6	9
75	Allylic Selenocyanates as New Agents to Combat <i>Fusarium</i> Species Involved with Human Infections. ChemistrySelect, 2017, 2, 11926-11932.	0.7	9
76	Triclosan resistance reversion by encapsulation in chitosan-coated-nanocapsule containing α-bisabolol as core: development of wound dressing. International Journal of Nanomedicine, 2017, Volume 12, 7855-7868.	3.3	19
77	Antifungal susceptibility profiles of Onychomycosis caused by different species of Fusarium. Open Forum Infectious Diseases, 2016, 3, .	0.4	1
78	Imidazolium salts with antifungal potential for the control of head blight of wheat caused by <i>Fusarium graminearum</i> . Journal of Applied Microbiology, 2016, 121, 445-452.	1.4	17
79	Reversal of fluconazole resistance induced by a synergistic effect with <i>Acca sellowiana</i> in <i>Candida glabrata</i> strains. Pharmaceutical Biology, 2016, 54, 2410-2419.	1.3	9
80	Chitosan-coated dapsone-loaded lipid-core nanocapsules: Growth inhibition of clinical isolates, multidrug-resistant Staphylococcus aureus and Aspergillus ssp Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 511, 153-161.	2.3	40
81	Multitask Imidazolium Salt Additives for Innovative Poly(<scp>l</scp> -lactide) Biomaterials: Morphology Control, <i>Candida</i> spp. Biofilm Inhibition, Human Mesenchymal Stem Cell Biocompatibility, and Skin Tolerance. ACS Applied Materials & Interfaces, 2016, 8, 21163-21176.	4.0	23
82	Assessing an imidazolium salt's performance as antifungal agent on a mouthwash formulation. Journal of Applied Microbiology, 2016, 121, 1558-1567.	1.4	9
83	Bifunctional fluorescent benzimidazo[1,2-α]quinolines for Candida spp. biofilm detection and biocidal activity. Journal of Photochemistry and Photobiology B: Biology, 2016, 163, 319-326.	1.7	7
84	Is the emergence of fungal resistance to medical triazoles related to their use in the agroecosystems? A mini review. Brazilian Journal of Microbiology, 2016, 47, 793-799.	0.8	69
85	Acanthamoeba and Fusarium interactions: A possible problem in keratitis. Acta Tropica, 2016, 157, 102-107.	0.9	17
86	Dermatofitoses: agentes etiológicos, formas clÃnicas, terapêutica e novas perspectivas de tratamento. Clinical and Biomedical Research, 2016, 36, 230-241.	0.1	17
87	Biofilm Antifungal Susceptibility of Candida Urine Isolated from Ambulatory Patients. Revista De Epidemiologia E Controle De Infecção, 2016, 6, .	0.0	1
88	1- <i>n</i> -Hexadecyl-3-methylimidazolium methanesulfonate and chloride salts with effective activities against <i>Candida tropicalis</i> biofilms. Letters in Applied Microbiology, 2015, 61, 504-510.	1.0	16
89	Imidazolium salts with antifungal potential against multidrug-resistant dermatophytes. Journal of Applied Microbiology, 2015, 119, 377-388.	1.4	27
90	Synthesis and Biological Evaluation of Hydrazone Derivatives as Antifungal Agents. Molecules, 2015, 20, 9229-9241.	1.7	20

#	Article	IF	CITATIONS
91	Biocompatible succinic acid-based polyesters for potential biomedical applications: fungal biofilm inhibition and mesenchymal stem cell growth. RSC Advances, 2015, 5, 85756-85766.	1.7	14
92	Antifungal activity of Uncaria tomentosa (Willd.) D.C. against resistant non-albicans Candida isolates. Industrial Crops and Products, 2015, 69, 7-14.	2.5	17
93	<i>In vitro</i> evaluation of the acquisition of resistance, antifungal activity and synergism of Brazilian red propolis with antifungal drugs on <i>Candida</i> spp Journal of Applied Microbiology, 2015, 118, 839-850.	1.4	69
94	Induction of ROS generation by fluconazole in Candida glabrata: activation of antioxidant enzymes and oxidative DNA damage. Diagnostic Microbiology and Infectious Disease, 2015, 82, 203-208.	0.8	37
95	Ecdysteroids in Sida tuberculata R.E. Fries (Malvaceae): Chemical composition by LC–ESI-MS and selective anti-Candida krusei activity. Food Chemistry, 2015, 182, 193-199.	4.2	14
96	Analysis of flavonoids in Rubus erythrocladus and Morus nigra leaves extracts by liquid chromatography and capillary electrophoresis. Revista Brasileira De Farmacognosia, 2015, 25, 219-227.	0.6	21
97	Chemical analysis and <i>in vitro</i> antiviral and antifungal activities of essential oils from <i>Glechon spathulata</i> and <i>Glechon marifolia</i> . Pharmaceutical Biology, 2015, 53, 682-688.	1.3	41
98	lmidazolium salts as antifungal agents: strong antibiofilm activity against multidrug-resistant <i>Candida tropicalis</i> isolates. Letters in Applied Microbiology, 2015, 60, 66-71.	1.0	48
99	Antifungal activity against Cryptococcus neoformans strains and genotoxicity assessment in human leukocyte cells of Euphorbia tirucalli L Brazilian Journal of Microbiology, 2014, 45, 1349-1355.	0.8	10
100	Contributing factors for farm workers' exposure to pesticides in the west of the state of Santa Catarina, Brazil. Acta Scientiarum - Health Sciences, 2014, 36, 153.	0.2	5
101	Antifungal activity and mechanism of action of monoterpenes against dermatophytes and yeasts. Revista Brasileira De Farmacognosia, 2014, 24, 660-667.	0.6	62
102	Synthesis of Isosteric Triterpenoid Derivatives and Antifungal Activity. Chemical Biology and Drug Design, 2014, 83, 344-349.	1.5	21
103	Gross Motor Function of A Child With Neurodegeneration With Brain Iron Accumulation (NBIA). Revista Neurociencias, 2014, 21, 574-579.	0.0	0
104	Imidazolium salts as antifungal agents: activity against emerging yeast pathogens, without human leukocyte toxicity. MedChemComm, 2013, 4, 1457.	3.5	52
105	Antidermatophytic activity of volatile oil and nanoemulsion of Stenachaenium megapotamicum (Spreng.) Baker. Industrial Crops and Products, 2013, 50, 23-28.	2.5	27
106	Antifungal and antichemotactic activities and quantification of phenolic compounds in lipophilic extracts of Hypericum spp. native to South Brazil. Industrial Crops and Products, 2013, 44, 294-299.	2.5	29
107	Evaluation of toxicity risks in farmers exposed to pesticides in an agricultural community in Concórdia, Santa Catarina State, Brazil. Acta Scientiarum - Health Sciences, 2013, 35, .	0.2	3
108	Which Amphetamine-Type Stimulants Can Be Detected by Oral Fluid Immunoassays?. Therapeutic Drug Monitoring, 2012, 34, 98-109.	1.0	12

#	Article	IF	CITATIONS
109	A SIX-YEAR EPIDEMIOLOGICAL SURVEY OF VULVOVAGINAL CANDIDIASIS IN CYTOPATHOLOGY REPORTS IN THE STATE OF RIO GRANDE DO SUL, BRAZIL. Journal of Tropical Pathology, 2012, 41, .	0.1	3
110	Comparação do perfil de suscetibilidade entre isolados clÃnicos de Candida spp. orais e vulvovaginais no Sul do Brasil. Jornal Brasileiro De Patologia E Medicina Laboratorial, 2011, 47, 33-38.	0.3	21
111	Assessment of the genotoxic impact of pesticides on farming communities in the countryside of Santa Catarina State, Brazil. Genetics and Molecular Biology, 2011, 34, 122-126.	0.6	22
112	Isolation of a lipase-secreting yeast for enzyme production in a pilot-plant scale batch fermentation. Bioresource Technology, 2010, 101, 268-275.	4.8	91
113	DETERMINACIÓN DE OCRATOXINA-A POR HPLC CON DETECCIÓN POR FLUORESCENCIA (HPLC-FL): UN NUEVO MÉTODO ESTANDARIZADO PARA MUESTRAS DE TRIGO. Revista Chilena De Nutricion, 2010, 37, .	0.1	1
114	Tetanus epidemiology in Santa Catarina, Brazil from 1998 to 2008. Infectio, 2010, 14, 112-119.	0.4	0
115	Epidemiological Profile of Cryptococcal Meningitis Patients in Rio Grande do Sul, Brazil. Mycopathologia, 2008, 166, 71-75.	1.3	32
116	Typing of <i>Staphylococcus epidermidis</i> clinical strains by a selected panel of Brazilian killer yeasts. Journal of Basic Microbiology, 2008, 48, 25-30.	1.8	4
117	Trichosporon insectorum sp. nov., a new anamorphic basidiomycetous killer yeast. Mycological Research, 2008, 112, 93-99.	2.5	36
118	Typing and patterns of cellular morphological alterations inCryptococcus neoformansandCryptococcus gattiiisolates exposed to a panel of killer yeasts. Medical Mycology, 2007, 45, 503-512.	0.3	10
119	Inhibition of clinical and environmentalCryptococcus neoformans isolates by two Brazilian killer yeasts. Journal of Basic Microbiology, 2006, 46, 87-93.	1.8	5
120	Occurrence and identification of yeasts in dogs external ear canal with and without otitis. Revista MVZ Cordoba, 0, , 3059-3064.	0.2	2
121	Multidrug-resistant Candida glabrata strains obtained by induction of anidulafungin resistance in planktonic and biofilm cells. Brazilian Journal of Pharmaceutical Sciences, 0, 55, .	1.2	3