Dongwon Ki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8606720/publications.pdf

Version: 2024-02-01

840119 1058022 19 592 11 14 citations h-index g-index papers 19 19 19 863 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Sustainable Lactic Acid Production from Lignocellulosic Biomass. ACS Sustainable Chemistry and Engineering, 2021, 9, 1341-1351.	3.2	72
2	Application to Traditional Ceramic Materials using Incinerated Sewage Sludge Ash. Journal of Korea Society of Waste Management, 2021, 38, 246-256.	0.1	0
3	Developing Analytical Standard Operating Procedure to Expand the Use of Combustible Waste as an Alternative Fuel for Cement Kilns. Journal of Korea Society of Waste Management, 2021, 38, 412-425.	0.1	O
4	High-rate stabilization of primary sludge in a single-chamber microbial hydrogen peroxide producing cell. Environmental Science: Water Research and Technology, 2019, 5, 1124-1131.	1.2	7
5	Microbial electrochemical cells as an alternative to biochemical methane potential tests for analyzing batch anaerobic digestion kinetics. Proceedings of the Water Environment Federation, 2018, 2018, 757-765.	0.0	0
6	Improved characterization of anaerobic digestion kinetics of mixed sludges with and without thermally pretreated WAS Proceedings of the Water Environment Federation, 2018, 2018, 775-781.	0.0	0
7	Primary sludge to valuable chemicals, hydrogen peroxide (H2O2), in microbial electrochemical cells - H2O2 production and in-situ sludge treatment. Proceedings of the Water Environment Federation, 2018, 2018, 482-495.	0.0	O
8	Maximizing Coulombic recovery and solids reduction from primary sludge by controlling retention time and pH in a flat-plate microbial electrolysis cell. Environmental Science: Water Research and Technology, 2017, 3, 333-339.	1.2	13
9	Intimate coupling of an N-doped TiO2 photocatalyst and anode respiring bacteria for enhancing 4-chlorophenol degradation and current generation. Chemical Engineering Journal, 2017, 317, 882-889.	6.6	77
10	H ₂ O ₂ Production in Microbial Electrochemical Cells Fed with Primary Sludge. Environmental Science & Envi	4.6	44
11	Reduced overpotentials in microbial electrolysis cells through improved design, operation, and electrochemical characterization. Chemical Engineering Journal, 2016, 287, 181-188.	6.6	80
12	Bathroom wastewater treatment in constructed wetlands with planting, non-planting and aeration, non-aeration conditions. Desalination and Water Treatment, 2016, 57, 709-717.	1.0	5
13	Effect of Pulsed Electric Field Pretreatment on Primary Sludge for Enhanced Bioavailability and Energy Capture. Environmental Engineering Science, 2015, 32, 831-837.	0.8	16
14	Effects of pre-fermentation and pulsed-electric-field treatment of primary sludge in microbial electrochemical cells. Bioresource Technology, 2015, 195, 83-88.	4.8	46
15	Buffer p <i>K</i> _a and Transport Govern the Concentration Overpotential in Electrochemical Oxygen Reduction at Neutral pH. ChemElectroChem, 2014, 1, 1909-1915.	1.7	32
16	Importance of OH ^{â^'} Transport from Cathodes in Microbial Fuel Cells. ChemSusChem, 2012, 5, 1071-1079.	3.6	133
17	Decision-Tree-based data mining and rule induction for predicting and mapping soil bacterial diversity. Environmental Monitoring and Assessment, 2011, 178, 595-610.	1.3	12
18	Using decision tree to develop a soil ecological quality assessment system for planning sustainable construction. Expert Systems With Applications, 2011, 38, 5463-5470.	4.4	14

#	Article	IF	CITATIONS
19	Bacterial biofilm-community selection during autohydrogenotrophic reduction of nitrate and perchlorate in ion-exchange brine. Applied Microbiology and Biotechnology, 2009, 81, 1169-1177.	1.7	41