Kelly A Berg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8606706/publications.pdf

Version: 2024-02-01

KELLY A REDC

#	Article	IF	CITATIONS
1	Age-related changes in peripheral nociceptor function. Neuropharmacology, 2022, 216, 109187.	2.0	6
2	Longâ€ŧerm antagonism and allosteric regulation of mu opioid receptors by the novel ligand, methocinnamox. Pharmacology Research and Perspectives, 2021, 9, e00887.	1.1	9
3	Signaling characteristics and functional regulation of delta opioid-kappa opioid receptor (DOP-KOP) heteromers in peripheral sensory neurons. Neuropharmacology, 2019, 151, 208-218.	2.0	12
4	Peripheral Kappa Opioid Receptor (KOR)â€Mediated Antinociception Requires G Proteinâ€Gated Inward Rectifying Potassium (GIRK) Channels. FASEB Journal, 2019, 33, 808.18.	0.2	0
5	Methocinnamox (MCAM) is a Selective, Long Acting Antagonist at Mu Opioid Receptors In Vitro. FASEB Journal, 2019, 33, 498.8.	0.2	1
6	Allosterism within <i>δ</i> Opioid– <i>κ</i> Opioid Receptor Heteromers in Peripheral Sensory Neurons: Regulation of <i>κ</i> Opioid Agonist Efficacy. Molecular Pharmacology, 2018, 93, 376-386.	1.0	17
7	Making Sense of Pharmacology: Inverse Agonism and Functional Selectivity. International Journal of Neuropsychopharmacology, 2018, 21, 962-977.	1.0	102
8	Regulation of δ Opioid Receptor-Mediated Signaling and Antinociception in Peripheral Sensory Neurons by Arachidonic Acid–Dependent 12/15-Lipoxygenase Metabolites. Journal of Pharmacology and Experimental Therapeutics, 2017, 362, 200-209.	1.3	9
9	Studies To Examine Potential Tolerability Differences between the 5-HT _{2C} Receptor Selective Agonists Lorcaserin and CP-809101. ACS Chemical Neuroscience, 2017, 8, 1074-1084.	1.7	8
10	Pharmacological augmentation of nicotinamide phosphoribosyltransferase (NAMPT) protects against paclitaxel-induced peripheral neuropathy. ELife, 2017, 6, .	2.8	36
11	Constitutive Desensitization of Opioid Receptors in Peripheral Sensory Neurons. Journal of Pharmacology and Experimental Therapeutics, 2016, 359, 411-419.	1.3	12
12	Long-Term Reduction of Kappa Opioid Receptor Function by the Biased Ligand, Norbinaltorphimine, Requires c-Jun N-Terminal Kinase Activity and New Protein Synthesis in Peripheral Sensory Neurons. Journal of Pharmacology and Experimental Therapeutics, 2016, 359, 319-328.	1.3	11
13	Functional Selectivity of Kappa Opioid Receptor Agonists in Peripheral Sensory Neurons. Journal of Pharmacology and Experimental Therapeutics, 2015, 355, 174-182.	1.3	30
14	Interleukin-6 Attenuates Serotonin 2A Receptor Signaling by Activating the JAK-STAT Pathway. Molecular Pharmacology, 2015, 87, 492-500.	1.0	14
15	Dual Regulation of <i>l̃'</i> -Opioid Receptor Function by Arachidonic Acid Metabolites in Rat Peripheral Sensory Neurons. Journal of Pharmacology and Experimental Therapeutics, 2015, 353, 44-51.	1.3	19
16	Divergence in Endothelin-1- and Bradykinin-Activated Store-Operated Calcium Entry in Afferent Sensory Neurons. ASN Neuro, 2015, 7, 175909141557871.	1.5	12
17	Atypical antipsychotics and inverse agonism at 5-HT ₂ receptors. Current Pharmaceutical Design, 2015, 21, 3732-3738.	0.9	44
18	G protein-coupled Receptor 30 (GPR30) Forms a Plasma Membrane Complex with Membrane-associated Guanylate Kinases (MAGUKs) and Protein Kinase A-anchoring Protein 5 (AKAP5) That Constitutively Inhibits cAMP Production. Journal of Biological Chemistry, 2014, 289, 22117-22127.	1.6	53

Kelly A Berg

#	Article	IF	CITATIONS
19	Allosteric Interactions between δ and κ Opioid Receptors in Peripheral Sensory Neurons. Molecular Pharmacology, 2012, 81, 264-272.	1.0	54
20	Receptor and Channel Heteromers as Pain Targets. Pharmaceuticals, 2012, 5, 249-278.	1.7	7
21	Metallopeptidase inhibition potentiates bradykinin-induced hyperalgesia. Pain, 2011, 152, 1548-1554.	2.0	15
22	Regulation of κ-Opioid Receptor Signaling in Peripheral Sensory Neurons In Vitro and In Vivo. Journal of Pharmacology and Experimental Therapeutics, 2011, 338, 92-99.	1.3	31
23	17β-Estradiol Rapidly Enhances Bradykinin Signaling in Primary Sensory Neurons In Vitro and In Vivo. Journal of Pharmacology and Experimental Therapeutics, 2010, 335, 190-196.	1.3	24
24	Inverse Agonism at Serotonin and Cannabinoid Receptors. Progress in Molecular Biology and Translational Science, 2010, 91, 1-40.	0.9	16
25	Peripheral delta opioid receptors require priming for functional competence in vivo. European Journal of Pharmacology, 2009, 602, 283-287.	1.7	52
26	Functional Selectivity at Serotonin Receptors. , 2009, , 155-176.		5
27	A Conservative, Single-Amino Acid Substitution in the Second Cytoplasmic Domain of the Human Serotonin _{2C} Receptor Alters Both Ligand-Dependent and -Independent Receptor Signaling. Journal of Pharmacology and Experimental Therapeutics, 2008, 324, 1084-1092.	1.3	48
28	Fine-tuning serotonin2c receptor function in the brain: Molecular and functional implications. Neuropharmacology, 2008, 55, 969-976.	2.0	85
29	Physiological and therapeutic relevance of constitutive activity of 5-HT2A and 5-HT2C receptors for the treatment of depression. Progress in Brain Research, 2008, 172, 287-305.	0.9	69
30	Rapid Modulation of μ-Opioid Receptor Signaling in Primary Sensory Neurons. Journal of Pharmacology and Experimental Therapeutics, 2007, 321, 839-847.	1.3	60
31	Functional Selectivity of Hallucinogenic Phenethylamine and Phenylisopropylamine Derivatives at Human 5-Hydroxytryptamine (5-HT)2A and 5-HT2C Receptors. Journal of Pharmacology and Experimental Therapeutics, 2007, 321, 1054-1061.	1.3	105
32	Development of functionally selective agonists as novel therapeutic agents. Drug Discovery Today: Therapeutic Strategies, 2006, 3, 421-428.	0.5	17
33	PAR-2 agonists activate trigeminal nociceptors and induce functional competence in the delta opioid receptor. Pain, 2006, 125, 114-124.	2.0	65
34	Modulation of bradykinin signaling by EP24.15 and EP24.16 in cultured trigeminal ganglia. Journal of Neurochemistry, 2006, 97, 13-21.	2.1	33
35	Differential Effects of 5-Methyl-1-[[2-[(2-methyl-3-pyridyl)oxyl]-5-pyridyl]carbamoyl]-6-trifluoromethylindone (SB 243213) on 5-Hydroxytryptamine2C Receptor-Mediated Responses. Journal of Pharmacology and Experimental Therapeutics, 2006, 319, 260-268.	1.3	37
36	Agonist-Directed Trafficking of 5-HT Receptor-Mediated Signal Transduction. , 2006, , 207-235.		3

KELLY A BERG

#	Article	IF	CITATIONS
37	Bradykinin-Induced Functional Competence and Trafficking of the Â-Opioid Receptor in Trigeminal Nociceptors. Journal of Neuroscience, 2005, 25, 8825-8832.	1.7	148
38	Physiological relevance of constitutive activity of 5-HT2A and 5-HT2C receptors. Trends in Pharmacological Sciences, 2005, 26, 625-630.	4.0	98
39	Constitutive Activity of the Serotonin2C Receptor Inhibits In Vivo Dopamine Release in the Rat Striatum and Nucleus Accumbens. Journal of Neuroscience, 2004, 24, 3235-3241.	1.7	297
40	Temporal Regulation of Agonist Efficacy at 5-Hydroxytryptamine (5-HT)1Aand 5-HT1BReceptors. Journal of Pharmacology and Experimental Therapeutics, 2003, 304, 200-205.	1.3	8
41	Rapid Desensitization of the Serotonin2C Receptor System: Effector Pathway and Agonist Dependence. Journal of Pharmacology and Experimental Therapeutics, 2002, 302, 957-962.	1.3	62
42	Regulation of 5-HT1A and 5-HT1B receptor systems by phospholipid signaling cascades. Brain Research Bulletin, 2001, 56, 471-477.	1.4	19
43	RNA-editing of the 5-HT2C receptor alters agonist-receptor-effector coupling specificity. British Journal of Pharmacology, 2001, 134, 386-392.	2.7	130
44	Effector Pathway-Dependent Relative Efficacy at Serotonin Type 2A and 2C Receptors: Evidence for Agonist-Directed Trafficking of Receptor Stimulus. Molecular Pharmacology, 1998, 54, 94-104.	1.0	484