
Péter P NÃ;nÃ;si

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8606279/publications.pdf Version: 2024-02-01

ΡÃ Πτερ Ρ ΝΑ:ΝΑ:SI

#	Article	IF	CITATIONS
1	Apico?basal inhomogeneity in distribution of ion channels in canine and human ventricular myocardium. Cardiovascular Research, 2005, 65, 851-860.	3.8	149
2	Ionic mechanisms limiting cardiac repolarization reserve in humans compared to dogs. Journal of Physiology, 2013, 591, 4189-4206.	2.9	122
3	Asymmetrical distribution of ion channels in canine and human left-ventricular wall: epicardium versus midmyocardium. Pflugers Archiv European Journal of Physiology, 2005, 450, 307-316.	2.8	118
4	A Multiscale Investigation of Repolarization Variability and Its Role in Cardiac Arrhythmogenesis. Biophysical Journal, 2011, 101, 2892-2902.	0.5	102
5	Activation of Transient Receptor Potential Vanilloid-3 Inhibits Human Hair Growth. Journal of Investigative Dermatology, 2011, 131, 1605-1614.	0.7	101
6	Effects of SEA0400 and KB-R7943 on Na+/Ca2+ exchange current and L-type Ca2+ current in canine ventricular cardiomyocytes. Naunyn-Schmiedeberg's Archives of Pharmacology, 2005, 372, 63-70.	3.0	97
7	Does small-conductance calcium-activated potassium channel contribute to cardiac repolarization?. Journal of Molecular and Cellular Cardiology, 2009, 47, 656-663.	1.9	88
8	Dynamics of the late Na+ current during cardiac action potential and its contribution to afterdepolarizations. Journal of Molecular and Cellular Cardiology, 2013, 64, 59-68.	1.9	86
9	Selective inhibition of sodium-calcium exchanger by SEA-0400 decreases early and delayed afterdepolarization in canine heart. British Journal of Pharmacology, 2004, 143, 827-831.	5.4	85
10	Speculations on Difference between Tricyclic and Selective Serotonin Reuptake Inhibitor Antidepressants on Their Cardiac Effects. Is There Any?. Current Medicinal Chemistry, 1999, 6, 469-480.	2.4	85
11	Diabetes mellitus attenuates the repolarization reserve in mammalian heart. Cardiovascular Research, 2007, 73, 512-520.	3.8	82
12	Endocardial versus epicardial differences in L-type calcium current in canine ventricular myocytes studied by action potential voltage clamp. Cardiovascular Research, 2003, 58, 66-75.	3.8	78
13	Reverse rate dependency is an intrinsic property of canine cardiac preparations. Cardiovascular Research, 2009, 84, 237-244.	3.8	54
14	Reverse rate-dependent changes are determined by baseline action potential duration in mammalian and human ventricular preparations. Basic Research in Cardiology, 2010, 105, 315-323.	5.9	51
15	The Effect of a Novel Highly Selective Inhibitor of the Sodium/Calcium Exchanger (NCX) on Cardiac Arrhythmias in In Vitro and In Vivo Experiments. PLoS ONE, 2016, 11, e0166041.	2.5	47
16	Rate and concentrationâ€dependent effects of UKâ€68,798, a potent new class III antiarrhythmic, on canine Purkinje fibre action potential duration and V _{max} . British Journal of Pharmacology, 1991, 103, 1568-1572.	5.4	45
17	Calcium Handling Defects and Cardiac Arrhythmia Syndromes. Frontiers in Pharmacology, 2020, 11, 72.	3.5	44
18	Contribution of ion currents to beat-to-beat variability of action potential duration in canine ventricular myocytes. Pflugers Archiv European Journal of Physiology, 2015, 467, 1431-1443.	2.8	40

#	Article	IF	CITATIONS
19	Effects of thymol on calcium and potassium currents in canine and human ventricular cardiomyocytes. British Journal of Pharmacology, 2002, 136, 330-338.	5.4	39
20	Selective <scp><scp>Na</scp></scp> ⁺ / <scp><scp>Ca</scp></scp> ²⁺ exchanger inhibition prevents <scp><scp>Ca</scp></scp> 2+ overloadâ€induced triggered arrhythmias. British Journal of Pharmacology, 2014, 171, 5665-5681.	5.4	38
21	Late Sodium Current Inhibitors as Potential Antiarrhythmic Agents. Frontiers in Pharmacology, 2020, 11, 413.	3.5	38
22	Contribution of I Kr and I K1 to ventricular repolarization in canine and human myocytes: is there any influence of action potential duration?. Basic Research in Cardiology, 2009, 104, 33-41.	5.9	37
23	Frequency-dependent effects of omecamtiv mecarbil on cell shortening of isolated canine ventricular cardiomyocytes. Naunyn-Schmiedeberg's Archives of Pharmacology, 2017, 390, 1239-1246.	3.0	33
24	Norfluoxetine and fluoxetine have similar anticonvulsant and Ca2+ channel blocking potencies. Brain Research Bulletin, 2005, 67, 126-132.	3.0	31
25	Differential effects of fluoxetine enantiomers in mammalian neural and cardiac tissues. International Journal of Molecular Medicine, 2003, 11, 535-42.	4.0	31
26	<i>In vitro</i> cardiac models of dog Purkinje fibre triggered and spontaneous electrical activity: effects of nicorandil. British Journal of Pharmacology, 1990, 99, 119-123.	5.4	29
27	Effects of Endothelins on Cardiac and Vascular Cells: New Therapeutic Target for the Future?. Current Vascular Pharmacology, 2004, 2, 53-63.	1.7	29
28	Electrophysiological effects of risperidone in mammalian cardiac cells. Naunyn-Schmiedeberg's Archives of Pharmacology, 2002, 366, 350-356.	3.0	28
29	The Na+/Ca2+ exchange blocker SEA0400 fails to enhance cytosolic Ca2+ transient and contractility in canine ventricular cardiomyocytes. Cardiovascular Research, 2008, 78, 476-484.	3.8	27
30	Effect of thymol on calcium handling in mammalian ventricular myocardium. Life Sciences, 2004, 74, 909-921.	4.3	25
31	Effect of sotalol on transmembrane ionic currents responsible for repolarization in cardiac ventricular myocytes from rabbit and guinea pig. Life Sciences, 1991, 49, PL7-PL12.	4.3	22
32	Cardiac electrophysiological effects of citalopram in guinea pig papillary muscle Comparison with clomipramine. General Pharmacology, 2000, 34, 17-23.	0.7	22
33	Potential Therapeutic Effects of Na+/Ca2+ Exchanger Inhibition in Cardiac Diseases. Current Medicinal Chemistry, 2009, 16, 3294-3321.	2.4	22
34	Hypotonic stress influence the membrane potential and alter the proliferation of keratinocytes in vitro. Experimental Dermatology, 2007, 16, 302-310.	2.9	21
35	The Janus Face of Adenosine: Antiarrhythmic and Proarrhythmic Actions. Current Pharmaceutical Design, 2014, 21, 965-976.	1.9	21
36	Sarcolemmal Ca 2+ -entry through L-type Ca 2+ channels controls the profile of Ca 2+ -activated Cl â^' current in canine ventricular myocytes. Journal of Molecular and Cellular Cardiology, 2016, 97, 125-139.	1.9	20

#	Article	IF	CITATIONS
37	Late sodium current in human, canine and guinea pig ventricular myocardium. Journal of Molecular and Cellular Cardiology, 2020, 139, 14-23.	1.9	20
38	Different actions of aconitine and veratrum alkaloids on frog skeletal muscle. General Pharmacology, 1990, 21, 863-868.	0.7	19
39	Transient receptor potential melastatin 4 channel inhibitor 9-phenanthrol inhibits K ⁺ but not Ca ²⁺ currents in canine ventricular myocytes. Canadian Journal of Physiology and Pharmacology, 2018, 96, 1022-1029.	1.4	19
40	Beat-to-beat variability of cardiac action potential duration: underlying mechanism and clinical implications. Canadian Journal of Physiology and Pharmacology, 2017, 95, 1230-1235.	1.4	18
41	Ca2+-activated Clâ^' current is antiarrhythmic by reducing both spatial and temporal heterogeneity of cardiac repolarization. Journal of Molecular and Cellular Cardiology, 2017, 109, 27-37.	1.9	18
42	Contribution of I Ks to ventricular repolarization in canine myocytes. Pflugers Archiv European Journal of Physiology, 2006, 452, 698-706.	2.8	17
43	L-364,373 fails to activate the slow delayed rectifier K+ current in canine ventricular cardiomyocytes. Naunyn-Schmiedeberg's Archives of Pharmacology, 2006, 373, 85-90.	3.0	17
44	Different effects of endothelin-1 on calcium and potassium currents in canine ventricular cells. Naunyn-Schmiedeberg's Archives of Pharmacology, 2001, 363, 383-390.	3.0	16
45	Effects of the PKC inhibitors chelerythrine and bisindolylmaleimide I (GF 109203X) on delayed rectifier K+ currents. Naunyn-Schmiedeberg's Archives of Pharmacology, 2011, 383, 141-148.	3.0	16
46	Asynchronous activation of calcium and potassium currents by isoproterenol in canine ventricular myocytes. Naunyn-Schmiedeberg's Archives of Pharmacology, 2014, 387, 457-467.	3.0	15
47	Omecamtiv mecarbil evokes diastolic dysfunction and leads to periodic electromechanical alternans. Basic Research in Cardiology, 2021, 116, 24.	5.9	15
48	Cardiac Sarcolemmal Ion Channels and Transporters as Possible Targets for Antiarrhythmic and Positive Inotropic Drugs: Strategies of the Past-Perspectives of the Future. Current Pharmaceutical Design, 2004, 10, 2411-2427.	1.9	15
49	Role of Gap Junction Channel in the Development of Beat-to-Beat Action Potential Repolarization Variability and Arrhythmias. Current Pharmaceutical Design, 2014, 21, 1042-1052.	1.9	15
50	The myosin activator omecamtiv mecarbil: a promising new inotropic agent. Canadian Journal of Physiology and Pharmacology, 2016, 94, 1033-1039.	1.4	14
51	Time Course of Low-Frequency Oscillatory Behavior in Human Ventricular Repolarization Following Enhanced Sympathetic Activity and Relation to Arrhythmogenesis. Frontiers in Physiology, 2019, 10, 1547.	2.8	14
52	Effect of subchronic bimoclomol treatment on vascular responsiveness and heat shock protein production in spontaneously hypertensive rats. Life Sciences, 2000, 67, 1791-1797.	4.3	13
53	Cytosolic calcium changes affect the incidence of early afterdepolarizations in canine ventricular myocytes. Canadian Journal of Physiology and Pharmacology, 2015, 93, 527-534.	1.4	13
54	Therapeutic Approaches of Ryanodine Receptor-Associated Heart Diseases. International Journal of Molecular Sciences, 2022, 23, 4435.	4.1	13

#	Article	IF	CITATIONS
55	Endogenous single-strand DNA breaks at RNA polymerase II promoters in Saccharomyces cerevisiae. Nucleic Acids Research, 2018, 46, 10649-10668.	14.5	12
56	Canine Myocytes Represent a Good Model for Human Ventricular Cells Regarding Their Electrophysiological Properties. Pharmaceuticals, 2021, 14, 748.	3.8	12
57	TRPM4 links calcium signaling to membrane potential in pancreatic acinar cells. Journal of Biological Chemistry, 2021, 297, 101015.	3.4	12
58	Selectivity Problems with Drugs Acting on Cardiac Na ⁺ and Ca ²⁺ Channels. Current Medicinal Chemistry, 2013, 20, 2552-2571.	2.4	12
59	Chemistry, Physiology, and Pharmacology of βAdrenergic Mechanisms in the Heart. Why are .β-Blocker Antiarrhythmics Superior?. Current Pharmaceutical Design, 2014, 21, 1030-1041.	1.9	12
60	Three distinct components of the negative inotropic action of lidocaine in dog purkinje fiber. General Pharmacology, 1996, 27, 69-71.	0.7	11
61	Electrophysiological effects of EGIS-7229, a new antiarrhythmic agent, in isolated mammalian and human cardiac tissues. Naunyn-Schmiedeberg's Archives of Pharmacology, 1997, 355, 398-405.	3.0	11
62	Doxorubicin induces large-scale and differential H2A and H2B redistribution in live cells. PLoS ONE, 2020, 15, e0231223.	2.5	11
63	Ion current profiles in canine ventricular myocytes obtained by the "onion peeling―technique. Journal of Molecular and Cellular Cardiology, 2021, 158, 153-162.	1.9	11
64	Omecamtiv Mecarbil: A Myosin Motor Activator Agent with Promising Clinical Performance and New in vitro Results. Current Medicinal Chemistry, 2018, 25, 1720-1728.	2.4	11
65	Tetrodotoxin Blockade on Canine Cardiac L-Type Ca2+ Channels Depends on pH and Redox Potential. Marine Drugs, 2013, 11, 2140-2153.	4.6	10
66	Inotropic effect of NCX inhibition depends on the relative activity of the reverse NCX assessed by a novel inhibitor ORM-10962 on canine ventricular myocytes. European Journal of Pharmacology, 2018, 818, 278-286.	3.5	10
67	Intercalation of small molecules into DNA in chromatin is primarily controlled by superhelical constraint. PLoS ONE, 2019, 14, e0224936.	2.5	10
68	Alternative linker histone permits fast paced nuclear divisions in early Drosophila embryo. Nucleic Acids Research, 2020, 48, 9007-9018.	14.5	10
69	Electrical restitution in diseased human ventricular myocardium. Clinical Physiology, 1996, 16, 339-351.	0.7	9
70	In vivo and in vitro acute cardiovascular effects of bimoclomol. General Pharmacology, 2000, 34, 363-369.	0.7	9
71	SEA0400 fails to alter the magnitude of intracellular Ca2+ transients and contractions in Langendorff-perfused guinea pig heart. Naunyn-Schmiedeberg's Archives of Pharmacology, 2008, 378, 65-71.	3.0	9
72	9–Anthracene carboxylic acid is more suitable than DIDS for characterization of calcium-activated chloride current during canine ventricular action potential. Naunyn-Schmiedeberg's Archives of Pharmacology, 2015, 388, 87-100.	3.0	9

#	Article	IF	CITATIONS
73	New saliva secretion model based on the expression of Na+-K+ pump and K+ channels in the apical membrane of parotid acinar cells. Pflugers Archiv European Journal of Physiology, 2018, 470, 613-621.	2.8	9
74	Handling of Ventricular Fibrillation in the Emergency Setting. Frontiers in Pharmacology, 2019, 10, 1640.	3.5	9
75	Late sodium current and calcium homeostasis in arrhythmogenesis. Channels, 2021, 15, 1-19.	2.8	9
76	Class IV Antiarrhythmic Agents: New Compounds Using an Old Strategy. Current Pharmaceutical Design, 2014, 21, 977-1010.	1.9	9
77	Effects of bimoclomol, the novel heat shock protein coinducer, in dog ventricular myocardium. Life Sciences, 2000, 67, 73-79.	4.3	8
78	Effects of norfluoxetine on the action potential and transmembrane ion currents in canine ventricular cardiomyocytes. Naunyn-Schmiedeberg's Archives of Pharmacology, 2004, 370, 203-10.	3.0	8
79	Effects of ropinirole on action potential characteristics and the underlying ion currents in canine ventricular myocytes. Naunyn-Schmiedeberg's Archives of Pharmacology, 2010, 382, 213-220.	3.0	8
80	Omecamtiv mecarbil activates ryanodine receptors from canine cardiac but not skeletal muscle. European Journal of Pharmacology, 2017, 809, 73-79.	3.5	8
81	Interactions of Cisplatin and Daunorubicin at the Chromatin Level. Scientific Reports, 2020, 10, 1107.	3.3	8
82	Mexiletine-like cellular electrophysiological effects of GS967 in canine ventricular myocardium. Scientific Reports, 2021, 11, 9565.	3.3	8
83	Electrophysiological Effects of the Transient Receptor Potential Melastatin 4 Channel Inhibitor (4-Chloro-2-(2-chlorophenoxy)acetamido) Benzoic Acid (CBA) in Canine Left Ventricular Cardiomyocytes. International Journal of Molecular Sciences, 2021, 22, 9499.	4.1	8
84	Electrophysiological effects of EGIS-7229, a new antiarrhythmic agent, in isolated guinea pig papillary muscle. General Pharmacology, 1997, 29, 275-280.	0.7	7
85	EGIS-7229, the new combined class III antiarrhythmic agent Lack of EAD inducing effect. General Pharmacology, 1999, 32, 329-333.	0.7	7
86	Profile of IKs During the Action Potential Questions the Therapeutic Value of IKs Blockade. Current Medicinal Chemistry, 2004, 11, 45-60.	2.4	7
87	Age-dependent changes in ion channel mRNA expression in canine cardiac tissues. General Physiology and Biophysics, 2012, 31, 153-162.	0.9	7
88	Oxidative shift in tissue redox potential increases beat-to-beat variability of action potential duration. Canadian Journal of Physiology and Pharmacology, 2015, 93, 563-568.	1.4	7
89	Editorial: Perspectives of Antiarrhythmic Drug Therapy: Disappointing Past, Current Efforts, and Faint Hopes. Frontiers in Pharmacology, 2020, 11, 1116.	3.5	7
90	Differences in the Effects of d- and dl-Sotalol on Isolated Human Ventricular Muscle: Electromechanical Activity After Beta-Adrenoceptor Stimulation. Journal of Cardiovascular Pharmacology and Therapeutics, 1996, 1, 65-73.	2.0	6

#	Article	IF	CITATIONS
91	Biphasic effect of bimoclomol on calcium handling in mammalian ventricular myocardium. British Journal of Pharmacology, 2000, 129, 1405-1412.	5.4	6
92	Cardiomyopathies and sudden cardiac death caused by RyR2 mutations: Are the channels the beginning and the end?â~†. Cardiovascular Research, 2006, 71, 416-418.	3.8	6
93	Effects of tacrolimus on action potential configuration and transmembrane ion currents in canine ventricular cells. Naunyn-Schmiedeberg's Archives of Pharmacology, 2013, 386, 239-246.	3.0	6
94	Expression of BK channels and Na+-K+ pumps in the apical membrane of lacrimal acinar cells suggests a new molecular mechanism for primary tear-secretion. Ocular Surface, 2019, 17, 272-277.	4.4	6
95	Pharmacological Modulation and (Patho)Physiological Roles of TRPM4 Channel—Part 2: TRPM4 in Health and Disease. Pharmaceuticals, 2022, 15, 40.	3.8	6
96	Effects of veratridine on Na and Ca currents in frog skeletal muscle. General Pharmacology, 1994, 25, 1661-1666.	0.7	5
97	Effects of EGIS-7229 (S 21407), a Novel Class III Antiarrhythmic Drug, on Myocardial Refractoriness to Electrical Stimulation In Vivo and In Vitro. Journal of Cardiovascular Pharmacology, 2001, 37, 78-88.	1.9	5
98	Effects of the antiarrhythmic agent EGIS-7229 (S 21407) on calcium and potassium currents in canine ventricular cardiomyocytes. Naunyn-Schmiedeberg's Archives of Pharmacology, 2001, 363, 604-611.	3.0	5
99	Late Sodium Current of the Heart: Where Do We Stand and Where Are We Going?. Pharmaceuticals, 2022, 15, 231.	3.8	5
100	Implication of frequency-dependent protocols in antiarrhythmic and proarrhythmic drug testing. Progress in Biophysics and Molecular Biology, 2020, 157, 76-83.	2.9	4
101	Late Na+ Current Is [Ca2+]i-Dependent in Canine Ventricular Myocytes. Pharmaceuticals, 2021, 14, 1142.	3.8	4
102	Doxorubicin impacts chromatin binding of HMGB1, Histone H1 and retinoic acid receptor. Scientific Reports, 2022, 12, 8087.	3.3	4
103	Concentration- and rate-dependent electrophysiological effects of restacorin on isolated canine purkinje fibres. Naunyn-Schmiedeberg's Archives of Pharmacology, 1990, 342, 691-697.	3.0	3
104	Use-dependent action of antiarrhythmic drugs in frog skeletal muscle and canine cardiac Purkinje fiber. General Pharmacology, 1990, 21, 747-751.	0.7	3
105	Effects of methylene blue and ascorbate on transmembrane potential in frog skeletal muscle. General Pharmacology, 1995, 26, 1307-1311.	0.7	3
106	Drug-induced changes in action potential duration are proportional to action potential duration in rat ventricular myocardium. General Physiology and Biophysics, 2010, 29, 309-313.	0.9	3
107	Brief structural insight into the allosteric gating mechanism of BK (Slo1) channel. Canadian Journal of Physiology and Pharmacology, 2019, 97, 498-502.	1.4	3
108	Biphasic effect of tetraethylammonium on canine Purkinje fibre action potential configuration. General Pharmacology, 1992, 23, 733-738.	0.7	2

#	Article	IF	CITATIONS
109	Active and Passive Electrical Properties of Isolated Canine Cardiac Purkinje Fibers under Conditions Simulating Ischaemia: Effect of Diltiazem. Basic and Clinical Pharmacology and Toxicology, 1992, 71, 52-56.	0.0	2
110	Action-Potential Duration and Contractility in Canine Cardiac Tissues. General Pharmacology, 1998, 31, 415-418.	0.7	2
111	Role of the dysfunctional ryanodine receptor - Na+-Ca2+exchanger axis in progression of cardiovascular diseases: What we can learn from pharmacological studies?. European Journal of Pharmacology, 2016, 779, 91-101.	3.5	2
112	Astaxanthin Exerts Anabolic Effects via Pleiotropic Modulation of the Excitable Tissue. International Journal of Molecular Sciences, 2022, 23, 917.	4.1	2
113	Pharmacological Modulation and (Patho)Physiological Roles of TRPM4 Channel—Part 1: Modulation of TRPM4. Pharmaceuticals, 2022, 15, 81.	3.8	2
114	Exploring the Coordination of Cardiac Ion Channels With Action Potential Clamp Technique. Frontiers in Physiology, 2022, 13, 864002.	2.8	2
115	Cardiovascular effects of BRX-005. Life Sciences, 2000, 67, 1783-1789.	4.3	1
116	β -adrenoceptor activation plays a role in the reverse rate-dependency of effective refractory period lengthening by dofetilide in the guinea-pig atrium, in vitro. British Journal of Pharmacology, 2003, 139, 1555-1563.	5.4	1
117	Perspectives of a myosin motor activator agent with increased selectivity. Canadian Journal of Physiology and Pharmacology, 2018, 96, 676-680.	1.4	1
118	Safety Concerns of Diamide Insecticides. Toxicological Sciences, 2019, 171, 281-281.	3.1	1
119	4-chloro-orto-cresol activates ryanodine receptor more selectively and potently than 4-chloro-meta-cresol. Cell Calcium, 2020, 88, 102213.	2.4	1
120	Effects of Hydrostatic Pressure Treatment of Newly Fertilized Eggs on the Ploidy Level and Karyotype of Pikeperch Sander lucioperca (Linnaeus, 1758). Life, 2021, 11, 1296.	2.4	1
121	Nucleosome destabilization by polyamines. Archives of Biochemistry and Biophysics, 2022, 722, 109184.	3.0	1
122	Effect of antiarrhythmic drugs, TTX, and 4-aminopyridine on repetitive electrical activity in frog skeletal muscle. General Pharmacology, 1990, 21, 563-567.	0.7	0
123	Effects of veratrine on ion currents in single rabbit cardiomyocytes. General Pharmacology, 1994, 25, 1667-1672.	0.7	0
124	Editorial [Hot Topic: Hot Topics in Cellular Cardiac Electrophysiology with Potential Impact on Future Drug Design (Guest Editors: Peter P. Nanasi and Valeria Kecskemeti)]. Current Medicinal Chemistry, 2011, 18, 3595-3596.	2.4	0
125	Editorial (Thematic Issue: Perspectives of Antiarrhythmic Therapy: New Trails, Challenges and Pitfalls). Current Pharmaceutical Design, 2014, 21, 963-964.	1.9	Ο
126	Action Potential Shape Differences Set Species-Dependent Î ² -Adrenergic-Stimulation Response. Biophysical Journal, 2014, 106, 119a.	0.5	0

#	Article	IF	CITATIONS
127	The diamide insecticide chlorantraniliprole increases the single-channel current activity of the mammalian skeletal muscle ryanodine receptor. General Physiology and Biophysics, 2019, 38, 183-186.	0.9	Ο
128	The Na+/Ca2+ exchange inhibitor SEA0400 fails to enhance cytosolic Ca2+ transient and contractility in isolated canine ventricular myocytes. FASEB Journal, 2008, 22, 635-635.	0.5	0
129	Effect of betaâ€adrenergic stimulation on the rapid delayed rectifier K current in canine ventricular cardiomyocytes. FASEB Journal, 2010, 24, 770.6.	0.5	0