Sean Garner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8605445/publications.pdf

Version: 2024-02-01

48 1,365 papers citations

20 h-index 34 g-index

52 all docs 52 docs citations 52 times ranked 2257 citing authors

#	Article	IF	Citations
1	Roll-to-Roll Printing of Perovskite Solar Cells. ACS Energy Letters, 2018, 3, 2558-2565.	17.4	199
2	High-Performance Flexible Perovskite Solar Cells on Ultrathin Glass: Implications of the TCO. Journal of Physical Chemistry Letters, 2017, 8, 4960-4966.	4.6	111
3	High-efficiency, flexible CdTe solar cells on ultra-thin glass substrates. Applied Physics Letters, 2015, 106, .	3.3	106
4	Ultra-slim flexible glass for roll-to-roll electronic device fabrication. Applied Physics A: Materials Science and Processing, 2014, 116, 403-407.	2.3	97
5	Highly Flexible Transparent Electrodes Containing Ultrathin Silver for Efficient Polymer Solar Cells. Advanced Functional Materials, 2015, 25, 7309-7316.	14.9	81
6	Gravure Printing of Conductive Inks on Glass Substrates for Applications in Printed Electronics. Journal of Display Technology, 2011, 7, 318-324.	1.2	67
7	14%-efficient flexible CdTe solar cells on ultra-thin glass substrates. Applied Physics Letters, 2014, 104,	3.3	62
8	An Indium Tin Oxide-Free Polymer Solar Cell on Flexible Glass. ACS Applied Materials & Emp; Interfaces, 2015, 7, 4541-4548.	8.0	60
9	Fabrication of Cu2ZnSnS4 solar cell on a flexible glass substrate. Thin Solid Films, 2014, 562, 574-577.	1.8	59
10	Flexible glass substrate based dye sensitized solar cells. Solar Energy Materials and Solar Cells, 2015, 132, 237-244.	6.2	48
11	Bendable transparent ZnO thin film surface acoustic wave strain sensors on ultra-thin flexible glass substrates. Journal of Materials Chemistry C, 2014, 2, 9109-9114.	5.5	44
12	Flexible, transparent, and conductive defrosting glass. Thin Solid Films, 2014, 556, 13-17.	1.8	39
13	Flexible photonic components in glass substrates. Optics Express, 2015, 23, 22532.	3.4	29
14	Electrophoretic Displays Fabricated on Ultra-Slim Flexible Glass Substrates. Journal of Display Technology, 2012, 8, 590-595.	1.2	27
15	Improving efficiencies of Cu2ZnSnS4 nanoparticle based solar cells on flexible glass substrates. Thin Solid Films, 2017, 642, 110-116.	1.8	27
16	Active Matrix Color-LCD on 75 \$mu\$m Thick Flexible Glass Substrates. Journal of Display Technology, 2012, 8, 309-316.	1.2	26
17	Enhancing the sensitivity of flexible acoustic wave ultraviolet photodetector with graphene-quantum-dots decorated ZnO nanowires. Sensors and Actuators A: Physical, 2021, 321, 112590.	4.1	26
18	Strained Growth of Aluminum-Doped Zinc Oxide on Flexible Glass Substrate and Degradation Studies Under Cyclic Bending Conditions. IEEE Transactions on Device and Materials Reliability, 2014, 14, 121-126.	2.0	25

#	Article	IF	Citations
19	Flexible thin-film acoustic wave devices with off-axis bending characteristics for multisensing applications. Microsystems and Nanoengineering, 2021, 7, 97.	7.0	25
20	Cholesteric Liquid Crystal Display With Flexible Glass Substrates. Journal of Display Technology, 2013, 9, 644-650.	1.2	21
21	Development of flexible ZnO thin film surface acoustic wave strain sensors on ultrathin glass substrates. Journal of Micromechanics and Microengineering, 2015, 25, 115005.	2.6	21
22	26.1: ⟨i⟩Invited Paper⟨/i⟩: Ultraâ€Slim Flexible Glass Substrates for Display Applications. Digest of Technical Papers SID International Symposium, 2012, 43, 342-344.	0.3	15
23	Diffractive Optical Elements with a Large Angle of Operation Recorded in Acrylamide Based Photopolymer on Flexible Substrates. International Journal of Polymer Science, 2014, 2014, 1-7.	2.7	12
24	Development of Transparent Electrodynamic Screens on Ultrathin Flexible Glass Film Substrates for Retrofitting Solar Panels and Mirrors for Self-Cleaning Function. MRS Advances, 2016, 1, 1003-1012.	0.9	12
25	Ultrathin Glass Substrates for Thin, Lightweight, Flexible OLED Lighting. Information Display, 2019, 35, 9-13.	0.2	11
26	Glass meets flexibility. Vakuum in Forschung Und Praxis, 2014, 26, 35-39.	0.1	10
27	Study on AZO coated flexible glass as TCO substrate. , 2016, , .		10
28	Iron pyrite thin films grown through a one-step annealing of iron oxide using sulfur sources, tert-butyl disulfide and H2S. Thin Solid Films, 2016, 615, 271-280.	1.8	10
29	Anti-reflective coating with a conductive indium tin oxide layer on flexible glass substrates. Applied Optics, 2018, 57, 2202.	1.8	10
30	Stacked volume holographic gratings for extending the operational wavelength range in LED and solar applications. Applied Optics, 2020, 59, 2569.	1.8	10
31	Surface Disruption Method With Flexible Glass to Prevent Potential-Induced Degradation of the Shunting Type in PV Modules. IEEE Journal of Photovoltaics, 2017, 7, 62-67.	2.5	8
32	Mitigation of dust impacts on solar collectors by water-free cleaning with transparent electrodynamic films: Progress and challenges. , 2016, , .		6
33	Micron-Sized Feature Overlay Alignment on Large Flexible Substrates for Electronic and Display Systems. Journal of Display Technology, 2011, 7, 330-338.	1.2	5
34	Non-vacuum route for CIGS thin film absorber on flexible glass substrates. , 2015, , .		5
35	58.2:Distinguished Paper: Roll-to-roll Process on Ultra-thin Flexible Glass for Manufacturing the Multi-Touch Sensor Panel. Digest of Technical Papers SID International Symposium, 2013, 44, 807-809.	0.3	4
36	Laser Cutting of Flexible Glass. , 2014, , .		4

#	Article	lF	CITATIONS
37	CO2 laser free-shape cutting of flexible glass substrates. , 2012, , .		3
38	Flexible glass substrates for display and lighting applications. , 2013, , .		3
39	The use of Corning® Willow™ glass for flexible CdTe solar cells. , 2013, , .		3
40	RF-sputtered Cd <inf>2</inf> SnO <inf>4</inf> for flexible glass CdTe solar cells. , 2016, , .		3
41	The effect of back contact and rapid thermal processing conditions on flexible CdTe device performance. , 2015, , .		2
42	Active and passive integration on flexible glass substrates: Subtractive single micron metal interposers and high performance IGZO thin film transistors. , 2015, , .		2
43	68-4: Demonstration of the Novel Ultra-Slim Flexible Glass as Substrate with Metal Meshed Antenna. Digest of Technical Papers SID International Symposium, 2016, 47, 937-939.	0.3	2
44	Study of the VHF Plasma Etching of Micro/Nano Patterned PMMA Coated on Ultra‶hin Flexible Glass Substrates. Plasma Processes and Polymers, 2016, 13, 990-996.	3.0	2
45	Roll-to-Roll Processing of Flexible Glass. , 2017, , 85-127.		2
46	In-situ flexural OPV measurements on flexible glass substrate. , 2015, , .		1
47	Flexible Glass for Microelectronics Integration. , 2017, , 331-347.		O
48	Sustainable Photovoltaics. Lecture Notes in Energy, 2020, , 25-85.	0.3	0