List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8605052/publications.pdf

Version: 2024-02-01

10127 12303 24,393 140 357 69 citations h-index g-index papers 366 366 366 26985 all docs citing authors docs citations times ranked

#	Article	IF	CITATIONS
1	A nearâ€infrared probe for detecting and interposing amyloid beta oligomerization in early Alzheimer's disease. Alzheimer's and Dementia, 2023, 19, 456-466.	0.4	8
2	Small nanoparticles bring big prospect: The synthesis, modification, photoluminescence and sensing applications of carbon dots. Chinese Chemical Letters, 2022, 33, 1659-1672.	4.8	22
3	Synergistic enhancement of immunological responses triggered by hyperthermia sensitive Pt NPs via NIR laser to inhibit cancer relapse and metastasis. Bioactive Materials, 2022, 7, 389-400.	8.6	33
4	Room temperature phosphorescent carbon dots for latent fingerprints detection and in vivo phosphorescence bioimaging. Sensors and Actuators B: Chemical, 2022, 351, 130976.	4.0	37
5	Mimetic sea cucumber-shaped nanoscale metal-organic frameworks composite for enhanced photodynamic therapy. Dyes and Pigments, 2022, 197, 109920.	2.0	7
6	Carbon dots embedded hydrogel spheres for sensing and removing rifampicin. Dyes and Pigments, 2022, 198, 110023.	2.0	11
7	Polymer-metal-organic framework hybrids for bioimaging and cancer therapy. Coordination Chemistry Reviews, 2022, 456, 214393.	9.5	25
8	4,4-Difluoro-4-bora-3a,4a-diaza-s-indacene (BDPI)-Triphenylphosphine Nanoparticles as a Photodynamic Antibacterial Agent. ACS Applied Nano Materials, 2022, 5, 1500-1507.	2.4	19
9	Binary dimeric prodrug nanoparticles for self-boosted drug release and synergistic chemo-photodynamic therapy. Journal of Materials Chemistry B, 2022, 10, 880-886.	2.9	11
10	A general carbon dot-based platform for intracellular delivery of proteins. Soft Matter, 2022, 18, 2776-2781.	1.2	2
11	Multivariate Strategy Preparation of Nanoscale Ru-Doped Metal–Organic Frameworks with Boosted Photoactivity for Bioimaging and Reactive Oxygen Species Generation. Inorganic Chemistry, 2022, 61, 4647-4654.	1.9	6
12	Water-Dispersible Porous Aromatic Frameworks with Quasi-Amino Acid Structures via N–H Insertion Reactions. ACS Nano, 2022, 16, 6197-6205.	7.3	5
13	Near-Infrared Light-Boosted Photodynamic-Immunotherapy based on sulfonated Metal-Organic framework nanospindle. Chemical Engineering Journal, 2022, 437, 135370.	6.6	10
14	Deep Tumor Penetrating Gold Nanoâ€Adjuvant for NIRâ€IIâ€Triggered In Situ Tumor Vaccination. Small, 2022, 18, e2200993.	5.2	18
15	Facile Preparation of a Thienoisoindigo-Based Nanoscale Covalent Organic Framework with Robust Photothermal Activity for Cancer Therapy. ACS Applied Materials & Samp; Interfaces, 2022, 14, 19129-19138.	4.0	19
16	Exploring BODIPY derivatives as photosensitizers for antibacterial photodynamic therapy. Photodiagnosis and Photodynamic Therapy, 2022, 39, 102901.	1.3	5
17	Two-dimensional metal-organic frameworks: from synthesis to bioapplications. Journal of Nanobiotechnology, 2022, 20, 207.	4.2	17
18	Indocyanine green potentiated paclitaxel nanoprodrugs for imaging and chemotherapy. Exploration, 2022, 2, .	5.4	28

#	Article	IF	CITATIONS
19	A cationic BODIPY photosensitizer decorated with quaternary ammonium for high-efficiency photodynamic inhibition of bacterial growth. Journal of Materials Chemistry B, 2022, 10, 4967-4973.	2.9	14
20	Nanoscale porphyrin assemblies based on charge-transfer strategy with enhanced red-shifted absorption. Journal of Colloid and Interface Science, 2022, 627, 554-561.	5.0	9
21	Metal–Organic Frameworks for Photodynamic Therapy: Emerging Synergistic Cancer Therapy. Biotechnology Journal, 2021, 16, e1900382.	1.8	42
22	Colour-tunable ultralong-lifetime room temperature phosphorescence with external heavy-atom effect in boron-doped carbon dots. Chemical Engineering Journal, 2021, 420, 127647.	6.6	101
23	Structural optimization of organic fluorophores for highly efficient photothermal therapy. Materials Chemistry Frontiers, 2021, 5, 284-292.	3.2	11
24	Merocyanine-paclitaxel conjugates for photothermal induced chemotherapy. Journal of Materials Chemistry B, 2021, 9, 2334-2340.	2.9	11
25	Rational design of iridium–porphyrin conjugates for novel synergistic photodynamic and photothermal therapy anticancer agents. Chemical Science, 2021, 12, 5918-5925.	3.7	53
26	Structural diversity of nanoscale zirconium porphyrin MOFs and their photoactivities and biological performances. Journal of Materials Chemistry B, 2021, 9, 7760-7770.	2.9	17
27	An activatable fluorescent prodrug of paclitaxel and BODIPY. Journal of Materials Chemistry B, 2021, 9, 2308-2313.	2.9	17
28	Carbon dots-based fluorescence and UV–vis absorption dual-modal sensors for Ag+ and l-cysteine detection. Dyes and Pigments, 2021, 187, 109126.	2.0	37
29	Nanoscale Covalent Organic Frameworks with Donor–Acceptor Structure for Enhanced Photothermal Ablation of Tumors. ACS Nano, 2021, 15, 7638-7648.	7.3	69
30	Phenylboronic acid modified carbon dots for improved protein delivery. Chemical Engineering Science, 2021, 237, 116586.	1.9	12
31	Unadulterated Organic Nanoparticles with Small Sizes for Robust Tumor Imaging and Photothermal Treatment. Advanced Functional Materials, 2021, 31, 2103714.	7.8	18
32	Defect Engineering of Nanoscale Hf-Based Metal–Organic Frameworks for Highly Efficient Iodine Capture. Inorganic Chemistry, 2021, 60, 9848-9856.	1.9	31
33	lonic Covalentâ€Organic Framework Nanozyme as Effective Cascade Catalyst against Bacterial Wound Infection. Small, 2021, 17, e2100756.	5.2	55
34	Vaginal drug delivery approaches for localized management of cervical cancer. Advanced Drug Delivery Reviews, 2021, 174, 114-126.	6.6	24
35	Ir(III) Complex Dimer Nanoparticles for Photodynamic Therapy. ACS Medicinal Chemistry Letters, 2021, 12, 1374-1379.	1.3	4
36	Controlled synthesis of spindle-shaped terrylenediimide nanoparticles for enhanced tumor accumulation and treatment. Chemical Engineering Journal, 2021, 419, 129552.	6.6	4

#	Article	IF	Citations
37	Hyaluronic acid nanofiber mats loaded with antimicrobial peptide towards wound dressing applications. Materials Science and Engineering C, 2021, 128, 112319.	3.8	35
38	Reductionâ€Sensitive Fluorinatedâ€Pt(IV) Universal Transfection Nanoplatform Facilitating CT45â€Targeted CRISPR/dCas9 Activation for Synergistic and Individualized Treatment of Ovarian Cancer. Small, 2021, 17, e2102494.	5.2	24
39	Engineering Paclitaxel Prodrug Nanoparticles via Redox-Activatable Linkage and Effective Carriers for Enhanced Chemotherapy. ACS Applied Materials & (2021, 13, 46291-46302).	4.0	20
40	Effects of preparation parameters on the properties of the crosslinked pectin nanofiber mats. Carbohydrate Polymers, 2021, 269, 118314.	5.1	5
41	Near-Infrared absorbing J-Aggregates of boron dipyrromethene for high efficient photothermal therapy. Journal of Colloid and Interface Science, 2021, 599, 476-483.	5.0	20
42	Leveraging BODIPY nanomaterials for enhanced tumor photothermal therapy. Journal of Materials Chemistry B, 2021, 9, 7318-7327.	2.9	29
43	Dual-sensitive dual-prodrug nanoparticles with light-controlled endo/lysosomal escape for synergistic photoactivated chemotherapy. Biomaterials Science, 2021, 9, 7115-7123.	2.6	10
44	Self-assembly of chiral foldamers with alternating hydrophilic and hydrophobic side chains into acid-sensitive and solvent-exchangeable vesicular particles. Soft Matter, 2021, 17, 10073-10079.	1.2	0
45	Multifunctional BODIPY for effective inactivation of Gram-positive bacteria and promotion of wound healing. Biomaterials Science, 2021, 9, 7648-7654.	2.6	18
46	Nanoscale aggregates of porphyrins: red-shifted absorption, enhanced absorbance and phototherapeutic activity. Materials Chemistry Frontiers, 2021, 5, 8333-8340.	3.2	8
47	Chiral Carbon Dots-Enzyme Nanoreactors with Enhanced Catalytic Activity for Cancer Therapy. ACS Applied Materials & Diterfaces, 2021, 13, 56456-56464.	4.0	34
48	Fluorinated paclitaxel prodrugs for potentiated stability and chemotherapy. Journal of Materials Chemistry B, 2021, 9, 9971-9979.	2.9	7
49	Intracellular Enzyme-Responsive Profluorophore and Prodrug Nanoparticles for Tumor-Specific Imaging and Precise Chemotherapy. ACS Applied Materials & Emp; Interfaces, 2021, 13, 59708-59719.	4.0	13
50	A redox-responsive dihydroartemisinin dimeric nanoprodrug for enhanced antitumor activity. Journal of Nanobiotechnology, 2021, 19, 441.	4.2	11
51	Lysosome targeting carbon dots-based fluorescent probe for monitoring pH changes in vitro and in vivo. Chemical Engineering Journal, 2020, 381, 122665.	6.6	77
52	Self-assembled nanostructured photosensitizer with aggregation-induced emission for enhanced photodynamic anticancer therapy. Science China Materials, 2020, 63, 136-146.	3.5	25
53	Metalâ€Organic Sheets for Efficient Drug Delivery and Bioimaging. ChemMedChem, 2020, 15, 416-419.	1.6	15
54	Fluorine-Doped Carbon Dots with Intrinsic Nucleus-Targeting Ability for Drug and Dye Delivery. Bioconjugate Chemistry, 2020, 31, 646-655.	1.8	45

#	Article	IF	Citations
55	Red fluorescent pyrazoline-BODIPY nanoparticles for ultrafast and long-term bioimaging. Organic and Biomolecular Chemistry, 2020, 18, 707-714.	1.5	21
56	A fluorescent sensor for intracellular Zn ²⁺ based on cylindrical molecular brushes of poly(2-oxazoline) through ion-induced emission. Polymer Chemistry, 2020, 11, 6650-6657.	1.9	11
57	Near-infrared-emitting AIE multinuclear cationic Ir(<scp>iii</scp>) complex-assembled nanoparticles for photodynamic therapy. Dalton Transactions, 2020, 49, 15332-15338.	1.6	13
58	Water-soluble cyclometalated Ir(<scp>iii</scp>) complexes as carrier-free and pure nanoparticle photosensitizers for photodynamic therapy and cell imaging. Dalton Transactions, 2020, 49, 11493-11497.	1.6	9
59	Redox responsive paclitaxel dimer for programmed drug release and selectively killing cancer cells. Journal of Colloid and Interface Science, 2020, 580, 785-793.	5.0	24
60	Photothermal Therapy Combined with Light-Induced Generation of Alkyl Radicals for Enhanced Efficacy of Tumor Treatment. ACS Applied Polymer Materials, 2020, 2, 4188-4194.	2.0	9
61	A Paclitaxel Prodrug Activatable by Irradiation in a Hypoxic Microenvironment. Angewandte Chemie, 2020, 132, 23398-23405.	1.6	10
62	A Paclitaxel Prodrug Activatable by Irradiation in a Hypoxic Microenvironment. Angewandte Chemie - International Edition, 2020, 59, 23198-23205.	7.2	94
63	Carbon Dots Based Nanoscale Covalent Organic Frameworks for Photodynamic Therapy. Advanced Functional Materials, 2020, 30, 2004680.	7.8	95
64	Exploiting radical-pair intersystem crossing for maximizing singlet oxygen quantum yields in pure organic fluorescent photosensitizers. Chemical Science, 2020, 11, 10921-10927.	3.7	17
65	Photoactive Metal–Organic Framework@Porous Organic Polymer Nanocomposites with pHâ€Triggered Type I Photodynamic Therapy. Advanced Materials Interfaces, 2020, 7, 2000504.	1.9	19
66	Endogenous Hydrogen Sulfide-Triggered MOF-Based Nanoenzyme for Synergic Cancer Therapy. ACS Applied Materials & Samp; Interfaces, 2020, 12, 30213-30220.	4.0	85
67	Protein-assisted synthesis of nanoscale covalent organic frameworks for phototherapy of cancer. Materials Chemistry Frontiers, 2020, 4, 2346-2356.	3. 2	34
68	Mitochondria-Targeting Organic Nanoparticles for Enhanced Photodynamic/Photothermal Therapy. ACS Applied Materials & Enterfaces, 2020, 12, 30077-30084.	4.0	66
69	Renal clearable Hafnium-doped carbon dots for CT/Fluorescence imaging of orthotopic liver cancer. Biomaterials, 2020, 255, 120110.	5 . 7	79
70	Heavy atom substituted near-infrared BODIPY nanoparticles for photodynamic therapy. Dyes and Pigments, 2020, 178, 108348.	2.0	21
71	Integration of metal-organic framework with a photoactive porous-organic polymer for interface enhanced phototherapy. Biomaterials, 2020, 235, 119792.	5.7	78
72	Cyclometallic iridium-based nanorods for chemotherapy/photodynamic therapy. Materials Letters, 2020, 266, 127346.	1.3	1

#	Article	IF	Citations
73	Bright red aggregation-induced emission nanoparticles for multifunctional applications in cancer therapy. Chemical Science, 2020, 11, 2369-2374.	3.7	40
74	Carbon dots with concentration-modulated fluorescence: Aggregation-induced multicolor emission. Journal of Colloid and Interface Science, 2020, 573, 241-249.	5.0	58
7 5	Fluorescent nanoparticles with ultralow chromophore loading for long-term tumor-targeted imaging. Acta Biomaterialia, 2020, 111, 398-405.	4.1	17
76	Biomimetic nano-NOS mediated local NO release for inhibiting cancer-associated platelet activation and disrupting tumor vascular barriers. Biomaterials, 2020, 255, 120141.	5.7	35
77	Chiral carbon dots-based nanosensors for Sn(II) detection and lysine enantiomers recognition. Sensors and Actuators B: Chemical, 2020, 319, 128265.	4.0	69
78	Comparison of Redox Responsiveness and Antitumor Capability of Paclitaxel Dimeric Nanoparticles with Different Linkers. Chemistry of Materials, 2020, 32, 10719-10727.	3.2	28
79	Highly efficient near-infrared BODIPY phototherapeutic nanoparticles for cancer treatment. Journal of Materials Chemistry B, 2020, 8, 5305-5311.	2.9	20
80	Conjugated Polymers and Polymer Dots for Cell Imaging. , 2020, , 155-180.		3
81	Near-infrared nanoparticles based on aza-BDP for photodynamic and photothermal therapy. Dyes and Pigments, 2019, 160, 71-78.	2.0	26
82	Rational Design of BODIPY-Diketopyrrolopyrrole Conjugated Polymers for Photothermal Tumor Ablation. ACS Applied Materials & Samp; Interfaces, 2019, 11, 32720-32728.	4.0	28
83	Stable supramolecular porphyrin@albumin nanoparticles for optimal photothermal activity. Materials Chemistry Frontiers, 2019, 3, 1892-1899.	3.2	12
84	Self-destructive PEG–BODIPY nanomaterials for photodynamic and photothermal therapy. Journal of Materials Chemistry B, 2019, 7, 4655-4660.	2.9	35
85	Comparative study of two near-infrared coumarin–BODIPY dyes for bioimaging and photothermal therapy of cancer. Journal of Materials Chemistry B, 2019, 7, 4717-4724.	2.9	32
86	Multiantigenic Nanoformulations Activate Anticancer Immunity Depending on Size. Advanced Functional Materials, 2019, 29, 1903391.	7.8	34
87	Engineering pH-Responsive BODIPY Nanoparticles for Tumor Selective Multimodal Imaging and Phototherapy. ACS Applied Materials & Samp; Interfaces, 2019, 11, 43928-43935.	4.0	43
88	A convenient and universal platform for sensing environmental nitro-aromatic explosives based on amphiphilic carbon dots. Environmental Research, 2019, 177, 108621.	3.7	29
89	Antigen-enabled facile preparation of MOF nanovaccine to activate the complement system for enhanced antigen-mediated immune response. Biomaterials Science, 2019, 7, 4022-4026.	2.6	16
90	Enhanced efficacy of photothermal therapy by combining a semiconducting polymer with an inhibitor of a heat shock protein. Materials Chemistry Frontiers, 2019, 3, 127-136.	3.2	68

#	Article	IF	Citations
91	Ultrafast and Noninvasive Long-Term Bioimaging with Highly Stable Red Aggregation-Induced Emission Nanoparticles. Analytical Chemistry, 2019, 91, 3467-3474.	3.2	62
92	Solvent controlled self-assembly of ⊩e-stacked/H-bonded supramolecular organic frameworks from a <i>C</i> ₃ -symmetric monomer for iodine adsorption. CrystEngComm, 2019, 21, 1742-1749.	1.3	14
93	Photothermal-Controlled Generation of Alkyl Radical from Organic Nanoparticles for Tumor Treatment. ACS Applied Materials & Samp; Interfaces, 2019, 11, 5782-5790.	4.0	37
94	AIE Multinuclear Ir(III) Complexes for Biocompatible Organic Nanoparticles with Highly Enhanced Photodynamic Performance. Advanced Science, 2019, 6, 1802050.	5.6	87
95	BODIPY@carbon dot nanocomposites for enhanced photodynamic activity. Materials Chemistry Frontiers, 2019, 3, 1747-1753.	3.2	45
96	Vaginal delivery of mucus-penetrating organic nanoparticles for photothermal therapy against cervical intraepithelial neoplasia in mice. Journal of Materials Chemistry B, 2019, 7, 4528-4537.	2.9	11
97	A BODIPY biosensor to detect and drive self-assembly of diphenylalanine. Chemical Communications, 2019, 55, 8564-8566.	2.2	9
98	Green Fluorescent Protein Nanovessel Serves as a Nucleolus Targeting Material and Molecule Carrier in Living Cells. Advanced Biology, 2019, 3, e1900047.	3.0	0
99	Tailor-Made Semiconducting Polymers for Second Near-Infrared Photothermal Therapy of Orthotopic Liver Cancer. ACS Nano, 2019, 13, 7345-7354.	7.3	126
100	BODIPY derivatives as light-induced free radical generators for hypoxic cancer treatment. Journal of Materials Chemistry B, 2019, 7, 3976-3981.	2.9	19
101	A postmodification strategy to modulate the photoluminescence of carbon dots from blue to green and red: synthesis and applications. Journal of Materials Chemistry B, 2019, 7, 3840-3845.	2.9	22
102	The crystal structures, spectrometric, photodynamic properties and bioimaging of Î ² -Î ² linked Bodipy oligomers. Journal of Luminescence, 2019, 212, 306-314.	1.5	8
103	Albumin-bound paclitaxel dimeric prodrug nanoparticles with tumor redox heterogeneity-triggered drug release for synergistic photothermal/chemotherapy. Nano Research, 2019, 12, 877-887.	5.8	38
104	Unadulterated BODIPY nanoparticles for biomedical applications. Coordination Chemistry Reviews, 2019, 390, 76-85.	9.5	99
105	Robust organic nanoparticles for noninvasive long-term fluorescence imaging. Journal of Materials Chemistry B, 2019, 7, 6879-6889.	2.9	12
106	Comparing the Rod-Like and Spherical BODIPY Nanoparticles in Cellular Imaging. Frontiers in Chemistry, 2019, 7, 765.	1.8	7
107	Multiantigenic Nanovaccines: Multiantigenic Nanoformulations Activate Anticancer Immunity Depending on Size (Adv. Funct. Mater. 49/2019). Advanced Functional Materials, 2019, 29, 1970336.	7.8	3
108	Self-quenching synthesis of coordination polymer pre-drug nanoparticles for selective photodynamic therapy. Journal of Materials Chemistry B, 2019, 7, 7776-7782.	2.9	16

#	Article	IF	Citations
109	Poly($\hat{l}\mu$ -caprolactone) modified organic dyes nanoparticles for noninvasive long term fluorescence imaging. Colloids and Surfaces B: Biointerfaces, 2019, 173, 884-890.	2.5	12
110	MMSET I acts as an oncoprotein and regulates GLO1 expression in t(4;14) multiple myeloma cells. Leukemia, 2019, 33, 739-748.	3.3	13
111	Amphiphilic redox-sensitive NIR BODIPY nanoparticles for dual-mode imaging and photothermal therapy. Journal of Colloid and Interface Science, 2019, 536, 208-214.	5.0	36
112	Rational design of BODIPY organic nanoparticles for enhanced photodynamic/photothermal therapy. Dyes and Pigments, 2019, 162, 295-302.	2.0	28
113	Hybrid Nanomaterials of Conjugated Polymers and Albumin for Precise Photothermal Therapy. ACS Applied Materials & Samp; Interfaces, 2019, 11, 278-287.	4.0	40
114	Redoxâ€responsive Fluorescent Nanoparticles Based on Diselenideâ€containing AlEgens for Cell Imaging and Selective Cancer Therapy. Chemistry - an Asian Journal, 2019, 14, 1745-1753.	1.7	16
115	Carrier-free core–shell nanodrugs for synergistic two-photon photodynamic therapy of cervical cancer. Journal of Colloid and Interface Science, 2019, 535, 84-91.	5.0	17
116	Synthesis of a Nearâ€Infrared BODIPY Dye for Bioimaging and Photothermal Therapy. Chemistry - an Asian Journal, 2018, 13, 989-995.	1.7	29
117	Hybrids of carbon dots with subunit B of ricin toxin for enhanced immunomodulatory activity. Journal of Colloid and Interface Science, 2018, 523, 226-233.	5.0	31
118	Fused Isoindigo Ribbons with Absorption Bands Reaching Nearâ€Infrared. Angewandte Chemie - International Edition, 2018, 57, 10283-10287.	7.2	31
119	Near-Infrared-Light-Induced Morphology Transition of Poly(ether amine) Nanoparticles for Supersensitive Drug Release. ACS Applied Materials & Interfaces, 2018, 10, 7413-7421.	4.0	28
120	Self-assembled organic nanorods for dual chemo-photodynamic therapies. RSC Advances, 2018, 8, 5493-5499.	1.7	6
121	Tailoring the morphology of AlEgen fluorescent nanoparticles for optimal cellular uptake and imaging efficacy. Chemical Science, 2018, 9, 2620-2627.	3.7	32
122	Light-Activatable Red Blood Cell Membrane-Camouflaged Dimeric Prodrug Nanoparticles for Synergistic Photodynamic/Chemotherapy. ACS Nano, 2018, 12, 1630-1641.	7.3	300
123	Nanoparticles based on glycyrrhetinic acid modified porphyrin for photodynamic therapy of cancer. Organic and Biomolecular Chemistry, 2018, 16, 1591-1597.	1.5	14
124	Second Near-Infrared Conjugated Polymer Nanoparticles for Photoacoustic Imaging and Photothermal Therapy. ACS Applied Materials & Samp; Interfaces, 2018, 10, 7919-7926.	4.0	188
125	Near-infrared BODIPY-paclitaxel conjugates assembling organic nanoparticles for chemotherapy and bioimaging. Journal of Colloid and Interface Science, 2018, 514, 584-591.	5.0	22
126	Exploring the optimal ratio of d-glucose/l-aspartic acid for targeting carbon dots toward brain tumor cells. Materials Science and Engineering C, 2018, 85, 1-6.	3.8	39

#	Article	IF	Citations
127	Nanoscale metal–organic frameworks for drug delivery: a conventional platform with new promise. Journal of Materials Chemistry B, 2018, 6, 707-717.	2.9	413
128	Fused Isoindigo Ribbons with Absorption Bands Reaching Nearâ€Infrared. Angewandte Chemie, 2018, 130, 10440-10444.	1.6	10
129	The Effect of Molecular Structure on Cytotoxicity and Antitumor Activity of PEGylated Nanomedicines. Biomacromolecules, 2018, 19, 1625-1634.	2.6	17
130	BODIPY-based carbon dots as fluorescent nanoprobes for sensing and imaging of extreme acidity. Analytical Methods, 2018, 10, 1863-1869.	1.3	14
131	Exploiting aggregation induced emission and twisted intramolecular charge transfer in a BODIPY dye for selective sensing of fluoride in aqueous medium and living cells. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 358, 274-283.	2.0	25
132	The impact of the postharvest environment on the viability and virulence of decay fungi. Critical Reviews in Food Science and Nutrition, 2018, 58, 1681-1687.	5 . 4	44
133	Transcriptome profiling reveals differential gene expression associated with changes in the morphology and stress tolerance of the biocontrol yeast, Pichia cecembensis. Biological Control, 2018, 120, 36-42.	1.4	8
134	Revealing membrane permeability of polymersomes through fluorescence enhancement. Colloids and Surfaces B: Biointerfaces, 2018, 161, 156-161.	2.5	10
135	Size-Tunable and Crystalline BODIPY Nanorods for Bioimaging. ACS Biomaterials Science and Engineering, 2018, 4, 1969-1975.	2.6	15
136	Facile preparation of a tetraphenylethylene-doped metal–organic framework for white light-emitting diodes. Journal of Materials Chemistry C, 2018, 6, 11701-11706.	2.7	22
137	Porphyrin–ferrocene conjugates for photodynamic and chemodynamic therapy. Organic and Biomolecular Chemistry, 2018, 16, 8613-8619.	1.5	27
138	Engineering Metal–Organic Frameworks for Photoacoustic Imaging-Guided Chemo-/Photothermal Combinational Tumor Therapy. ACS Applied Materials & Distributional Tumor Therapy. ACS Applied Materials & Distributional Tumor Therapy. ACS Applied Materials & Distributional Tumor Therapy. ACS Applied Materials & Distribution Therapy. ACS Applied Ma	4.0	104
139	Solidâ€State TICTâ€Emissive Cruciform: Aggregationâ€Enhanced Emission, Deepâ€Red to Nearâ€Infrared Piezochromism and Imaging In Vivo. Advanced Optical Materials, 2018, 6, 1800956.	3.6	48
140	Constructing reduction-sensitive PEGylated NIRF mesoporous silica nanoparticles <i>via</i> a one-pot Passerini reaction for photothermal/chemo-therapy. Chemical Communications, 2018, 54, 11921-11924.	2.2	16
141	Mechanism and Effect of Polar Styrenes on Scandium atalyzed Copolymerization with Ethylene. Angewandte Chemie, 2018, 130, 15112-15117.	1.6	55
142	Facile synthesis of a metal–organic framework nanocarrier for NIR imaging-guided photothermal therapy. Biomaterials Science, 2018, 6, 2918-2924.	2.6	37
143	Mechanism and Effect of Polar Styrenes on Scandium atalyzed Copolymerization with Ethylene. Angewandte Chemie - International Edition, 2018, 57, 14896-14901.	7.2	60
144	Nanoscale Mixed-Component Metal–Organic Frameworks with Photosensitizer Spatial-Arrangement-Dependent Photochemistry for Multimodal-Imaging-Guided Photothermal Therapy. Chemistry of Materials, 2018, 30, 6867-6876.	3.2	122

#	Article	IF	Citations
145	Exposure of Candida oleophila to sublethal salt stress induces an antioxidant response and improves biocontrol efficacy. Biological Control, 2018, 127, 109-115.	1.4	27
146	Hypoxia-Triggered Nanoscale Metal–Organic Frameworks for Enhanced Anticancer Activity. ACS Applied Materials & Diterfaces, 2018, 10, 24638-24647.	4.0	91
147	Nanoscale Melittin@Zeolitic Imidazolate Frameworks for Enhanced Anticancer Activity and Mechanism Analysis. ACS Applied Materials & Interfaces, 2018, 10, 22974-22984.	4.0	49
148	Diketopyrrolopyrrole-based carbon dots for photodynamic therapy. Nanoscale, 2018, 10, 10991-10998.	2.8	101
149	Nanoparticles of Chlorin Dimer with Enhanced Absorbance for Photoacoustic Imaging and Phototherapy. Advanced Functional Materials, 2018, 28, 1706507.	7.8	96
150	Diketopyrrolopyrrole-based carbon dots for photodynamic therapy. Nanoscale, 2018, 10, 10991-10998.	2.8	7
151	Comparing Effects of Redox Sensitivity of Organic Nanoparticles to Photodynamic Activity. Chemistry of Materials, 2017, 29, 1856-1863.	3.2	50
152	PEGâ€Induced Synthesis of Coordinationâ€Polymer Isomers with Tunable Architectures and Iodine Capture. Chemistry - an Asian Journal, 2017, 12, 615-620.	1.7	32
153	GSH-triggered size increase of porphyrin-containing nanosystems for enhanced retention and photodynamic activity. Journal of Materials Chemistry B, 2017, 5, 4470-4477.	2.9	18
154	Relief of oxidative stress and cardiomyocyte apoptosis by using curcumin nanoparticles. Colloids and Surfaces B: Biointerfaces, 2017, 153, 174-182.	2.5	33
155	Stimuli-Responsive Polymersomes for Biomedical Applications. Biomacromolecules, 2017, 18, 649-673.	2.6	316
156	BODIPY-containing nanoscale metal–organic frameworks as contrast agents for computed tomography. Journal of Materials Chemistry B, 2017, 5, 2330-2336.	2.9	75
157	Metal–Organic Framework@Porous Organic Polymer Nanocomposite for Photodynamic Therapy. Chemistry of Materials, 2017, 29, 2374-2381.	3.2	204
158	Selfâ€Assembly of Tunable Heterometallic Ln–Ru Coordination Polymers with Nearâ€Infrared Luminescence and Magnetocaloric Effect. Chemistry - A European Journal, 2017, 23, 2852-2857.	1.7	26
159	Near infrared BODIPY-Platinum conjugates for imaging, photodynamic therapy and chemotherapy. Dyes and Pigments, 2017, 141, 5-12.	2.0	40
160	Photothermally induced accumulation and retention of polymeric nanoparticles in tumors for long-term fluorescence imaging. Journal of Materials Chemistry B, 2017, 5, 2491-2499.	2.9	10
161	Light-induced synthesis of triazine N-oxide-based cross-linked polymers for effective photocatalytic degradation of methyl orange. RSC Advances, 2017, 7, 9309-9315.	1.7	4
162	Glutathione-responsive paclitaxel dimer nanovesicles with high drug content. Biomaterials Science, 2017, 5, 1517-1521.	2.6	34

#	Article	IF	CITATIONS
163	A glutathione-activatable photodynamic and fluorescent imaging monochromatic photosensitizer. Journal of Materials Chemistry B, 2017, 5, 4239-4245.	2.9	30
164	PEGylated BODIPY assembling fluorescent nanoparticles for photodynamic therapy. Chinese Chemical Letters, 2017, 28, 1875-1877.	4.8	32
165	Two tetraphenylethene-containing coordination polymers for reversible mechanochromism. Chemical Communications, 2017, 53, 7048-7051.	2.2	51
166	Self-assembly of glutamic acid linked paclitaxel dimers into nanoparticles for chemotherapy. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 2493-2496.	1.0	14
167	Paclitaxel dimers assembling nanomedicines for treatment of cervix carcinoma. Journal of Controlled Release, 2017, 254, 23-33.	4.8	101
168	H ₂ O ₂ -Responsive Vesicles Integrated with Transcutaneous Patches for Glucose-Mediated Insulin Delivery. ACS Nano, 2017, 11, 613-620.	7.3	255
169	Metal–Organic Frameworks@Polymer Composites Containing Cyanines for Near-Infrared Fluorescence Imaging and Photothermal Tumor Therapy. Bioconjugate Chemistry, 2017, 28, 2784-2793.	1.8	42
170	Triple-BODIPY organic nanoparticles with particular fluorescence emission. Dyes and Pigments, 2017, 147, 241-245.	2.0	10
171	Fluorescent Protein Nanovessels: A New Platform to Generate Bio–Abiotic Hybrid Materials for Bioimaging. Advanced Functional Materials, 2017, 27, 1702051.	7.8	12
172	Self-assembling organic nanoparticles for bioimaging and cargo delivery. Journal of Controlled Release, 2017, 259, e140-e141.	4.8	0
173	Cyclodextrin/Paclitaxel Dimer Assembling Vesicles: Reversible Morphology Transition and Cargo Delivery. ACS Applied Materials & Samp; Interfaces, 2017, 9, 26740-26748.	4.0	35
174	Controlled Growth of Metalâ€Organic Frameworks on Polymer Brushes. Chemistry - A European Journal, 2017, 23, 13337-13341.	1.7	12
175	Rational Design of Polymeric Nanoparticles with Tailorable Biomedical Functions for Cancer Therapy. ACS Applied Materials & Damp; Interfaces, 2017, 9, 29612-29622.	4.0	20
176	Nanoprodrug of retinoic acid-modified paclitaxel. Organic and Biomolecular Chemistry, 2017, 15, 9611-9615.	1.5	13
177	Zirconium-Based Nanoscale Metal–Organic Framework/Poly(Îμ-caprolactone) Mixed-Matrix Membranes as Effective Antimicrobials. ACS Applied Materials & Interfaces, 2017, 9, 41512-41520.	4.0	77
178	Stereochemically Dependent Synthesis of Two Cu(I) Cluster-Based Coordination Polymers with Thermochromic Luminescence. Inorganic Chemistry, 2017, 56, 13975-13981.	1.9	38
179	Porphyrinâ€Based Carbon Dots for Photodynamic Therapy of Hepatoma. Advanced Healthcare Materials, 2017, 6, 1600924.	3.9	125
180	Nanoscale Fluorescent Metal–Organic Framework@Microporous Organic Polymer Composites for Enhanced Intracellular Uptake and Bioimaging. Chemistry - A European Journal, 2017, 23, 1379-1385.	1.7	49

#	Article	IF	CITATIONS
181	Supramolecular hybrids of carbon dots with doxorubicin: synthesis, stability and cellular trafficking. Materials Chemistry Frontiers, 2017, 1, 354-360.	3.2	59
182	Phenylboronic Acidâ€Crossâ€Linked Nanoparticles with Improved Stability as Dual Acidâ€Responsive Drug Carriers. Macromolecular Bioscience, 2017, 17, 1600227.	2.1	9
183	A pharmaceutical hydrogen-bonded covalent organic polymer for enrichment of volatile iodine. RSC Advances, 2017, 7, 54407-54415.	1.7	35
184	Synthesis of the Hemoglobinâ€Conjugated Polymer Micelles by Thiol Michael Addition Reactions. Macromolecular Bioscience, 2016, 16, 906-913.	2.1	11
185	Nanoscale Metal–Organic Framework–Hemoglobin Conjugates. Chemistry - an Asian Journal, 2016, 11, 750-756.	1.7	32
186	Selfâ€Assembly of Porphyrin–Paclitaxel Conjugates Into Nanomedicines: Enhanced Cytotoxicity due to Endosomal Escape. Chemistry - an Asian Journal, 2016, 11, 1780-1784.	1.7	54
187	Dual-Sensitive Charge-Conversional Polymeric Prodrug for Efficient Codelivery of Demethylcantharidin and Doxorubicin. Biomacromolecules, 2016, 17, 2650-2661.	2.6	24
188	Lanthanide-Connecting and Lone-Electron-Pair Active Trigonal-Pyramidal-AsO3 Inducing Nanosized Poly(polyoxotungstate) Aggregates and Their Anticancer Activities. Scientific Reports, 2016, 6, 26406.	1.6	37
189	Tetraphenylethylene-based fluorescent coordination polymers for drug delivery. Journal of Materials Chemistry B, 2016, 4, 4263-4266.	2.9	64
190	Dopamine carbon nanodots as effective photothermal agents for cancer therapy. RSC Advances, 2016, 6, 54087-54091.	1.7	24
191	Time-programmed DCA and oxaliplatin release by multilayered nanofiber mats in prevention of local cancer recurrence following surgery. Journal of Controlled Release, 2016, 235, 125-133.	4.8	63
192	Single-Stimulus Dual-Drug Sensitive Nanoplatform for Enhanced Photoactivated Therapy. Biomacromolecules, 2016, 17, 2120-2127.	2.6	42
193	Polymer brushes on metal–organic frameworks by UV-induced photopolymerization. Polymer Chemistry, 2016, 7, 5828-5834.	1.9	49
194	Polypyrrole coated PLGA core–shell nanoparticles for drug delivery and photothermal therapy. RSC Advances, 2016, 6, 84269-84275.	1.7	16
195	Photochromic Terbium Phosphonates with Photomodulated Luminescence and Metal Ion Sensitive Detection. Chemistry - A European Journal, 2016, 22, 15451-15457.	1.7	63
196	Cooperation of Amphiphilicity and Crystallization for Regulating the Self-Assembly of Poly(ethylene) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf 5
197	Co-assembled hybrids of proteins and carbon dots for intracellular protein delivery. Journal of Materials Chemistry B, 2016, 4, 5659-5663.	2.9	37
198	Near-Infrared Polymeric Nanoparticles with High Content of Cyanine for Bimodal Imaging and Photothermal Therapy. ACS Applied Materials & Emp; Interfaces, 2016, 8, 24426-24432.	4.0	56

#	Article	IF	Citations
199	Amphiphilic Polycarbonates from Carborane-Installed Cyclic Carbonates as Potential Agents for Boron Neutron Capture Therapy. Bioconjugate Chemistry, 2016, 27, 2214-2223.	1.8	43
200	Effect of Molecular Structure on Stability of Organic Nanoparticles Formed by Bodipy Dimers. Langmuir, 2016, 32, 9575-9581.	1.6	17
201	Solvatochromic fluorescent carbon dots as optic noses for sensing volatile organic compounds. RSC Advances, 2016, 6, 83501-83504.	1.7	43
202	Nanoscale Polymer Metal–Organic Framework Hybrids for Effective Photothermal Therapy of Colon Cancers. Advanced Materials, 2016, 28, 9320-9325.	11.1	194
203	Ugi Reaction of Natural Amino Acids: A General Route toward Facile Synthesis of Polypeptoids for Bioapplications. ACS Macro Letters, 2016, 5, 1049-1054.	2.3	69
204	One-Pot To Synthesize Multifunctional Carbon Dots for Near Infrared Fluorescence Imaging and Photothermal Cancer Therapy. ACS Applied Materials & Samp; Interfaces, 2016, 8, 23533-23541.	4.0	244
205	Rapid Self-Assembly of Block Copolymers for Flower-Like Particles with High Throughput. Langmuir, 2016, 32, 13517-13524.	1.6	16
206	Cyanine-Curcumin Assembling Nanoparticles for Near-Infrared Imaging and Photothermal Therapy. ACS Biomaterials Science and Engineering, 2016, 2, 1942-1950.	2.6	40
207	Selfâ€Assembly of Amphiphilic Drug–Dye Conjugates into Nanoparticles for Imaging and Chemotherapy. Chemistry - an Asian Journal, 2016, 11, 3174-3177.	1.7	15
208	A pH-responsive poly(ether amine) micelle with hollow structure for controllable drug release. RSC Advances, 2016, 6, 91940-91948.	1.7	13
209	Supramolecular Hybrids of AlEgen with Carbon Dots for Noninvasive Long-Term Bioimaging. Chemistry of Materials, 2016, 28, 8825-8833.	3.2	59
210	Amphiphilic Cyanine–Platinum Conjugates as Fluorescent Nanodrugs. Chemistry - an Asian Journal, 2016, 11, 221-225.	1.7	15
211	Redox-Hypersensitive Organic Nanoparticles for Selective Treatment of Cancer Cells. Chemistry of Materials, 2016, 28, 4440-4446.	3.2	101
212	BODIPY-containing nanoscale metal–organic frameworks for photodynamic therapy. Chemical Communications, 2016, 52, 5402-5405.	2.2	160
213	Benzimidazole-BODIPY as optical and fluorometric pH sensor. Dyes and Pigments, 2016, 128, 165-169.	2.0	58
214	Multifunctional single-drug loaded nanoparticles for enhanced cancer treatment with low toxicity in vivo. RSC Advances, 2016, 6, 20366-20373.	1.7	10
215	Reduction-responsive fluorescence off–on BODIPY–camptothecin conjugates for self-reporting drug release. Journal of Materials Chemistry B, 2016, 4, 2332-2337.	2.9	38
216	A dual-responsive nanocapsule via disulfide-induced self-assembly for therapeutic agent delivery. Chemical Science, 2016, 7, 1846-1852.	3.7	92

#	Article	IF	CITATIONS
217	Preparation of highly luminescent and color tunable carbon nanodots under visible light excitation for in vitro and in vivo bio-imaging. Journal of Materials Research, 2015, 30, 3386-3393.	1.2	20
218	Protein-Resistant Biodegradable Amphiphilic Graft Copolymer Vesicles as Protein Carriers. Macromolecular Bioscience, 2015, 15, 1304-1313.	2.1	13
219	EGFPâ€Based Protein Nanoparticles with Cellâ€Penetrating Peptide for Efficient siRNA Delivery. Macromolecular Bioscience, 2015, 15, 1484-1489.	2.1	9
220	cRGD targeted and charge conversion-controlled release micelles for doxorubicin delivery. RSC Advances, 2015, 5, 22957-22964.	1.7	15
221	Use of asymmetric multilayer polylactide nanofiber mats in controlled release of drugs and prevention of liver cancer recurrence after surgery in mice. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1047-1056.	1.7	59
222	Double pH-responsive supramolecular copolymer micelles based on the complementary multiple hydrogen bonds of nucleobases and acetalated dextran for drug delivery. Polymer Chemistry, 2015, 6, 3625-3633.	1.9	31
223	Local, combination chemotherapy in prevention of cervical cancer recurrence after surgery by using nanofibers co-loaded with cisplatin and curcumin. RSC Advances, 2015, 5, 106325-106332.	1.7	34
224	Doxorubicin-Loaded Carborane-Conjugated Polymeric Nanoparticles as Delivery System for Combination Cancer Therapy. Biomacromolecules, 2015, 16, 3980-3988.	2.6	81
225	Photo-cross-linked poly(ether amine) micelles for controlled drug release. RSC Advances, 2015, 5, 105880-105888.	1.7	9
226	Tailoring color emissions from N-doped graphene quantum dots for bioimaging applications. Light: Science and Applications, 2015, 4, e364-e364.	7.7	366
227	Three Colors Emission from S,N Coâ€doped Graphene Quantum Dots for Visible Light H ₂ Production and Bioimaging. Advanced Optical Materials, 2015, 3, 360-367.	3.6	276
228	Light-induced synthesis of cross-linked polymers and their application in explosive detection. European Polymer Journal, 2015, 63, 149-155.	2.6	10
229	Mitochondria-Localized Fluorescent BODIPY-Platinum Conjugate. ACS Medicinal Chemistry Letters, 2015, 6, 430-433.	1.3	80
230	Fluorescent Hydrogen-Bonded Organic Framework for Sensing of Aromatic Compounds. Crystal Growth and Design, 2015, 15, 542-545.	1.4	86
231	Reduction-sensitive amphiphilic copolymers made via multi-component Passerini reaction for drug delivery. Colloids and Surfaces B: Biointerfaces, 2015, 126, 217-223.	2.5	36
232	Acetalated-dextran as valves of mesoporous silica particles for pH responsive intracellular drug delivery. RSC Advances, 2015, 5, 9546-9555.	1.7	32
233	A polymer–(multifunctional single-drug) conjugate for combination therapy. Journal of Materials Chemistry B, 2015, 3, 4913-4921.	2.9	20
234	Biodegradable dextran vesicles for effective haemoglobin encapsulation. Journal of Materials Chemistry B, 2015, 3, 5753-5759.	2.9	11

#	Article	IF	CITATIONS
235	The use of cisplatin-loaded mucoadhesive nanofibers for local chemotherapy of cervical cancers in mice. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 93, 127-135.	2.0	91
236	Novel multi-sensitive pseudo-poly(amino acid) for effective intracellular drug delivery. RSC Advances, 2015, 5, 31972-31983.	1.7	19
237	Photoluminescence: Three Colors Emission from S,N Co-doped Graphene Quantum Dots for Visible Light H2Production and Bioimaging (Advanced Optical Materials 3/2015). Advanced Optical Materials, 2015, 3, 359-359.	3.6	4
238	Small molecular nanomedicines made from a camptothecin dimer containing a disulfide bond. RSC Advances, 2015, 5, 81499-81501.	1.7	40
239	One-Step Synthesis of Nanoscale Zeolitic Imidazolate Frameworks with High Curcumin Loading for Treatment of Cervical Cancer. ACS Applied Materials & Samp; Interfaces, 2015, 7, 22181-22187.	4.0	192
240	A dextran–platinum(<scp>iv</scp>) conjugate as a reduction-responsive carrier for triggered drug release. Journal of Materials Chemistry B, 2015, 3, 8203-8211.	2.9	36
241	Self-Targeting Fluorescent Carbon Dots for Diagnosis of Brain Cancer Cells. ACS Nano, 2015, 9, 11455-11461.	7.3	439
242	pH-responsive metallo-supramolecular nanogel for synergistic chemo-photodynamic therapy. Acta Biomaterialia, 2015, 25, 162-171.	4.1	41
243	Thiadiazole molecules and poly(ethylene glycol)-block-polylactide self-assembled nanoparticles as effective photothermal agents. Colloids and Surfaces B: Biointerfaces, 2015, 136, 201-206.	2.5	25
244	Synergistic effect and drugâ€resistance relief of paclitaxel and cisplatin caused by Coâ€delivery using polymeric micelles. Journal of Applied Polymer Science, 2015, 132, .	1.3	9
245	Overcoming tumor resistance to cisplatin through micelle-mediated combination chemotherapy. Biomaterials Science, 2015, 3, 182-191.	2.6	37
246	MMSET: Role and Therapeutic Opportunities in Multiple Myeloma. BioMed Research International, 2014, 2014, 1-5.	0.9	21
247	Nanoparticle mediated delivery of a GST inhibitor ethacrynic acid for sensitizing platinum based chemotherapy. RSC Advances, 2014, 4, 61124-61132.	1.7	17
248	Rational design and synthesis of covalent organic polymers with hollow structure and excellent antibacterial efficacy. RSC Advances, 2014, 4, 40269-40272.	1.7	12
249	Cyclic RGD targeting nanoparticles with pH sensitive polymer–drug conjugates for effective treatment of melanoma. RSC Advances, 2014, 4, 55187-55194.	1.7	19
250	Complex of cisplatin with biocompatible poly(ethylene glycol) with pendant carboxyl groups for the effective treatment of liver cancer. Journal of Applied Polymer Science, 2014, 131, n/a-n/a.	1.3	7
251	Insight into the fabrication of polymeric particle based oxygen carriers. International Journal of Pharmaceutics, 2014, 468, 75-82.	2.6	13
252	Ruthenium complex immobilized on mesoporous silica as recyclable heterogeneous catalyst for visible light photocatalysis. Chemical Research in Chinese Universities, 2014, 30, 310-314.	1.3	8

#	Article	IF	Citations
253	BODIPY Fluorescent Chemosensor for Cu2+ Detection and Its Applications in Living Cells: Fast Response and High Sensitivity. Journal of Fluorescence, 2014, 24, 841-846.	1.3	26
254	Green Photocatalysis with Oxygen Sensitive BODIPYs under Visible Light. Catalysis Letters, 2014, 144, 308-313.	1.4	21
255	Electrospinning of polymeric nanofibers for drug delivery applications. Journal of Controlled Release, 2014, 185, 12-21.	4.8	995
256	Functional Metal–Organic Frameworks via Ligand Doping: Influences of Ligand Charge and Steric Demand. Inorganic Chemistry, 2014, 53, 1331-1338.	1.9	32
257	Coâ€×scp>Delivery of Oxaliplatin and Demethylcantharidin via a Polymer–Drug Conjugate. Macromolecular Bioscience, 2014, 14, 588-596.	2.1	17
258	Injectable and biodegradable supramolecular hydrogels formed by nucleobase-terminated poly(ethylene oxide)s and \hat{l}_{\pm} -cyclodextrin. Journal of Materials Chemistry B, 2014, 2, 659-667.	2.9	51
259	Lactose targeting oxaliplatin prodrug loaded micelles for more effective chemotherapy of hepatocellular carcinoma. Journal of Materials Chemistry B, 2014, 2, 2097.	2.9	21
260	Hybrid polymer micelles capable of cRGD targeting and pH-triggered surface charge conversion for tumor selective accumulation and promoted uptake. Chemical Communications, 2014, 50, 9188-9191.	2.2	46
261	Unadulterated BODIPY-dimer nanoparticles with high stability and good biocompatibility for cellular imaging. Nanoscale, 2014, 6, 5662-5665.	2.8	54
262	Studies on the biological character of a new pH-sensitive doxorubicin prodrug with tumor targeting using a LC-MS/MS method. Analytical Methods, 2014, 6, 3159.	1.3	4
263	Asymmetric copolymer vesicles to serve as a hemoglobin vector for ischemia therapy. Biomaterials Science, 2014, 2, 1254.	2.6	20
264	A Nanosized {Ag@Ag ₁₂ } "Molecular Windmill―Templated by Polyoxometalates Anions. Inorganic Chemistry, 2014, 53, 11584-11588.	1.9	30
265	A single-step emulsion approach to prepare fluorescent nanoscale coordination polymers for bioimaging. RSC Advances, 2014, 4, 14803-14806.	1.7	4
266	Paclitaxel prodrug nanoparticles combining chemical conjugation and physical entrapment for enhanced antitumor efficacy. RSC Advances, 2014, 4, 38405-38411.	1.7	24
267	Biodegradable polymersomes from fourâ€arm PEGâ€bâ€PDLLA for encapsulating hemoglobin. Journal of Applied Polymer Science, 2014, 131, .	1.3	5
268	Y-shaped block copolymer (methoxy-poly(ethylene glycol))2-b-poly(l-glutamic acid): preparation, self-assembly, and use as drug carriers. RSC Advances, 2014, 4, 41588-41596.	1.7	7
269	Integrating Oxaliplatin with Highly Luminescent Carbon Dots: An Unprecedented Theranostic Agent for Personalized Medicine. Advanced Materials, 2014, 26, 3554-3560.	11.1	509
270	Dynamically controlled one-pot synthesis of heterogeneous core–shell MOF single crystals using guest molecules. Chemical Communications, 2014, 50, 11653-11656.	2.2	47

#	Article	IF	CITATIONS
271	Synergistic co-delivery of doxorubicin and paclitaxel by porous PLGA microspheres for pulmonary inhalation treatment. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 88, 1086-1093.	2.0	97
272	Novel hydroxyl-containing reduction-responsive pseudo-poly(aminoacid) via click polymerization as an efficient drug carrier. Polymer Chemistry, 2014, 5, 4488.	1.9	25
273	Near-Infrared Emitting Fluorescent BODIPY Nanovesicles for in Vivo Molecular Imaging and Drug Delivery. ACS Applied Materials & Samp; Interfaces, 2014, 6, 16166-16173.	4.0	70
274	Synthesis of cross-linked polymers via multi-component Passerini reaction and their application as efficient photocatalysts. RSC Advances, 2014, 4, 25114-25117.	1.7	15
275	Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots. Scientific Reports, 2014, 4, 5294.	1.6	759
276	Synthesis of mesoporous silica nanoparticle–oxaliplatin conjugates for improved anticancer drug delivery. Colloids and Surfaces B: Biointerfaces, 2014, 117, 75-81.	2.5	75
277	Multifunctional Pt(<scp>iv</scp>) pro-drug and its micellar platform: to kill two birds with one stone. Journal of Materials Chemistry B, 2013, 1, 762-772.	2.9	36
278	A highly efficient "metalloligand―strategy for the synthesis of ternary Ln–Ru–W hybrids. Chemical Communications, 2013, 49, 7911.	2.2	24
279	Thymine Modified Amphiphilic Biodegradable Copolymers for Photoâ€ <scp>C</scp> rossâ€ <scp>L</scp> inked Micelles as Stable Drug Carriers. Macromolecular Bioscience, 2013, 13, 1593-1600.	2.1	9
280	Fast Response and High Sensitivity Europium Metal Organic Framework Fluorescent Probe with Chelating Terpyridine Sites for Fe ³⁺ . ACS Applied Materials & Interfaces, 2013, 5, 1078-1083.	4.0	488
281	Cross-linked polymers based on 2,5-disubstituted tetrazoles for unsaturated hydrocarbon detection. RSC Advances, 2013, 3, 21302.	1.7	7
282	Inhibition of orthotopic secondary hepatic carcinoma in mice by doxorubicin-loaded electrospun polylactide nanofibers. Journal of Materials Chemistry B, 2013, 1, 101-109.	2.9	97
283	Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts. Nanoscale, 2013, 5, 12272.	2.8	1,018
284	A reduction-sensitive carrier system using mesoporous silica nanospheres with biodegradable polyester as caps. Physical Chemistry Chemical Physics, 2013, 15, 14210.	1.3	24
285	Luteinizing-hormone-releasing-hormone-containing biodegradable polymer micelles for enhanced intracellular drug delivery. Journal of Materials Chemistry B, 2013, 1, 293-301.	2.9	18
286	Oneâ€step Preparation of Macroporous Polymer Particles with Multiple Interconnected Chambers: A Candidate for Trapping Biomacromolecules. Angewandte Chemie - International Edition, 2013, 52, 10625-10629.	7. 2	69
287	Polymeric dinulcear platinum(ii) complex micelles for enhanced antitumor activity. Journal of Materials Chemistry B, 2013, 1, 744.	2.9	12
288	Size-dependent biodistribution and antitumor efficacy of polymer micelle drug delivery systems. Journal of Materials Chemistry B, 2013, 1, 4273.	2.9	42

#	Article	IF	CITATIONS
289	Iodo-BODIPY: a visible-light-driven, highly efficient and photostable metal-free organic photocatalyst. RSC Advances, 2013, 3, 13417.	1.7	99
290	On–Off–On Fluorescent Carbon Dot Nanosensor for Recognition of Chromium(VI) and Ascorbic Acid Based on the Inner Filter Effect. ACS Applied Materials & Interfaces, 2013, 5, 13242-13247.	4.0	700
291	Core Crossâ€Linked Micelleâ€Based Nanoreactors for Efficient Photocatalysis. Chemistry - an Asian Journal, 2013, 8, 2807-2812.	1.7	12
292	Regulation of Conjugated Hemoglobin on Micelles through Copolymer Chain Sequences and the Protein's Isoelectric Aggregation. Macromolecular Bioscience, 2013, 13, 893-902.	2.1	23
293	Plasma Membrane Proteomics Identifies Biomarkers Associated with MMSET Overexpression in T(4;14) Multiple Myeloma. Oncotarget, 2013, 4, 1008-1018.	0.8	26
294	Electrochemical Water Oxidation with Carbon-Grafted Iridium Complexes. ACS Applied Materials & Interfaces, 2012, 4, 608-613.	4.0	69
295	Reduction-sensitive core-cross-linked mPEG–poly(ester-carbonate) micelles for glutathione-triggered intracellular drug release. Polymer Chemistry, 2012, 3, 2403.	1.9	71
296	Targeting and anti-tumor effect of folic acid-labeled polymer–Doxorubicin conjugates with pH-sensitive hydrazone linker. Journal of Materials Chemistry, 2012, 22, 13303.	6.7	51
297	Co-delivery of all-trans-retinoic-acid and cisplatin(iv) prodrug based on polymer–drug conjugates for enhanced efficacy and safety. Journal of Materials Chemistry, 2012, 22, 25453.	6.7	15
298	Reduction-responsive shell-crosslinked micelles prepared from Y-shaped amphiphilic block copolymers as a drug carrier. Soft Matter, 2012, 8, 7426.	1.2	56
299	Biological Characterization of Folate-Decorated Biodegradable Polymer–Platinum(II) Complex Micelles. Molecular Pharmaceutics, 2012, 9, 3200-3208.	2.3	31
300	Biodegradable Amphiphilic Copolymer Containing Nucleobase: Synthesis, Self-Assembly in Aqueous Solutions, and Potential Use in Controlled Drug Delivery. Biomacromolecules, 2012, 13, 3004-3012.	2.6	70
301	Co-delivery of daunomycin and oxaliplatin by biodegradable polymers for safer and more efficacious combination therapy. Journal of Controlled Release, 2012, 163, 304-314.	4.8	110
302	The use of polymeric platinum(IV) prodrugs to deliver multinuclear platinum(II) drugs with reduced systemic toxicity and enhanced antitumor efficacy. Biomaterials, 2012, 33, 8657-8669.	5.7	77
303	Photo-cross-linked mPEG-poly(\hat{l}^3 -cinnamyl-l-glutamate) micelles as stable drug carriers. Polymer Chemistry, 2012, 3, 1300.	1.9	60
304	Core-crosslinked amphiphilic biodegradable copolymer based on the complementary multiple hydrogen bonds of nucleobases: synthesis, self-assembly and in vitro drug delivery. Journal of Materials Chemistry, 2012, 22, 24832.	6.7	49
305	Light-Harvesting Cross-Linked Polymers for Efficient Heterogeneous Photocatalysis. ACS Applied Materials & Samp; Interfaces, 2012, 4, 2288-2294.	4.0	72
306	Transferrin-Conjugated Micelles: Enhanced Accumulation and Antitumor Effect for Transferrin-Receptor-Overexpressing Cancer Models. Molecular Pharmaceutics, 2012, 9, 1919-1931.	2.3	72

#	Article	IF	Citations
307	A high connectivity metal–organic framework with exceptional hydrogen and methane uptake capacities. Chemical Science, 2012, 3, 3032.	3.7	75
308	Fluorescenceâ€Labeled Immunomicelles: Preparation, in vivo Biodistribution, and Ability to Cross the Blood–Brain Barrier. Macromolecular Bioscience, 2012, 12, 1209-1219.	2.1	13
309	Porous heterogeneous organic photocatalyst prepared by HIPE polymerization for oxidation of sulfides under visible light. Journal of Materials Chemistry, 2012, 22, 17445.	6.7	64
310	Highly Stable and Porous Cross-Linked Polymers for Efficient Photocatalysis. Journal of the American Chemical Society, 2011, 133, 2056-2059.	6.6	394
311	Doping Metal–Organic Frameworks for Water Oxidation, Carbon Dioxide Reduction, and Organic Photocatalysis. Journal of the American Chemical Society, 2011, 133, 13445-13454.	6.6	1,363
312	Determinants of Sensitivity to DZNep Induced Apoptosis in Multiple Myeloma Cells. PLoS ONE, 2011, 6, e21583.	1.1	29
313	BODIPY photocatalyzed oxidation of thioanisole under visible light. Catalysis Communications, 2011, 16, 94-97.	1.6	73
314	Therapeutic potential of antisense oligodeoxynucleotides in downregulating p53 oncogenic mutations in cancers. Biotechnology Letters, 2011, 33, 221-228.	1.1	2
315	Catalytic Synthesis of Fatty Acid Methyl Esters from Extremely Low Quality Greases. JAOCS, Journal of the American Oil Chemists' Society, 2011, 88, 1417-1424.	0.8	10
316	Three-Dimensional Metalâ^'Organic Frameworks Based on Tetrahedral and Square-Planar Building Blocks: Hydrogen Sorption and Dye Uptake Studies. Inorganic Chemistry, 2010, 49, 9107-9109.	1.9	37
317	Porous Phosphorescent Coordination Polymers for Oxygen Sensing. Journal of the American Chemical Society, 2010, 132, 922-923.	6.6	587
318	A Novel Biodegradable and Lightâ€Breakable Diblock Copolymer Micelle for Drug Delivery. Advanced Engineering Materials, 2009, 11, B7.	1.6	16
319	Synthesis, selfâ€assembly in water, and cytotoxicity of MPEGâ€ <i>block</i> â€PLLA/DX conjugates. Journal of Biomedical Materials Research - Part A, 2009, 88A, 238-245.	2.1	21
320	lodinated Nanoscale Coordination Polymers as Potential Contrast Agents for Computed Tomography. Angewandte Chemie - International Edition, 2009, 48, 9901-9904.	7.2	229
321	Freeze Drying Significantly Increases Permanent Porosity and Hydrogen Uptake in 4,4 onnected Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2009, 48, 9905-9908.	7.2	203
322	Synthesis and self-assembly of a novel Y-shaped copolymer with a helical polypeptide arm. Polymer, 2009, 50, 455-461.	1.8	28
323	Postsynthetic Modifications of Iron-Carboxylate Nanoscale Metalâ "Organic Frameworks for Imaging and Drug Delivery. Journal of the American Chemical Society, 2009, 131, 14261-14263.	6.6	1,354
324	Enhanced activation of STAT pathways and overexpression of survivin confer resistance to FLT3 inhibitors and could be therapeutic targets in AML. Blood, 2009, 113, 4052-4062.	0.6	144

#	Article	IF	Citations
325	Inhibition of CD44 expression in hepatocellular carcinoma cells enhances apoptosis, chemosensitivity, and reduces tumorigenesis and invasion. Cancer Chemotherapy and Pharmacology, 2008, 62, 949-957.	1.1	47
326	Aliphatic poly(esterâ€carbonate)s bearing amino groups and its RGD peptide grafting. Journal of Polymer Science Part A, 2008, 46, 7022-7032.	2.5	47
327	A biodegradable diblcok copolymer poly(ethylene) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 667 Td (glycol)å Docetaxel and RGD conjugation. Journal of Applied Polymer Science, 2008, 110, 2961-2970.	ì€∢i>block 1.3	≀â€poly(25
328	In vivo activity of ABT-869, a multi-target kinase inhibitor, against acute myeloid leukemia with wild-type FLT3 receptor. Leukemia Research, 2008, 32, 1091-1100.	0.4	22
329	Controlled release of urea encapsulated by starch-g-poly(l-lactide). Carbohydrate Polymers, 2008, 72, 342-348.	5.1	128
330	Biodegradable Amphiphilic Block Copolymers Bearing Protected Hydroxyl Groups: Synthesis and Characterization. Biomacromolecules, 2008, 9, 553-560.	2.6	73
331	ABT-869, a multi-targeted tyrosine kinase inhibitor, in combination with rapamycin is effective for subcutaneous hepatocellular carcinoma xenograft. Journal of Hepatology, 2008, 49, 985-997.	1.8	38
332	Synthesis and Characterization of Novel Biodegradable Poly(carbonate ester)s with Photolabile Protecting Groups. Biomacromolecules, 2008, 9, 376-380.	2.6	57
333	In vitro and in vivo antitumor effect of a trivalent bispecific antibody targeting ErbB2 and CD16. Cancer Biology and Therapy, 2008, 7, 1744-1750.	1.5	11
334	Direct Formation of Giant Vesicles from Synthetic Polypeptides. Langmuir, 2007, 23, 8308-8315.	1.6	103
335	Triblock poly(lactic acid)-b-poly(ethylene glycol)-b-poly(lactic acid)/paclitaxel conjugates: Synthesis, micellization, and cytotoxicity. Journal of Applied Polymer Science, 2007, 105, 2271-2279.	1.3	37
336	A facile approach to biodegradable poly($\hat{l}\mu$ -caprolactone)-poly(ethylene glycol)-based polyurethanes containing pendant amino groups. European Polymer Journal, 2007, 43, 2080-2087.	2.6	35
337	Synthesis and characterization of novel poly(ester carbonate)s based on pentaerythritol. Journal of Polymer Science Part A, 2007, 45, 1737-1745.	2.5	35
338	Sugars-grafted aliphatic biodegradable poly(L-lactide-co-carbonate)s by click reaction and their specific interaction with lectin molecules. Journal of Polymer Science Part A, 2007, 45, 3204-3217.	2.5	69
339	Synthesis and characterization of amphiphilic block copolymers with allyl sideâ€groups. Journal of Polymer Science Part A, 2007, 45, 5518-5528.	2.5	57
340	Synergistic antileukemia effect of genistein and chemotherapy in mouse xenograft model and potential mechanism through MAPK signaling. Experimental Hematology, 2007, 35, 75.e1-75.e11.	0.2	36
341	A novel polymer–paclitaxel conjugate based on amphiphilic triblock copolymer. Journal of Controlled Release, 2007, 117, 210-216.	4.8	108
342	Biodegradable Amphiphilic Triblock Copolymer Bearing Pendant Glucose Residues:Â Preparation and Specific Interaction with Concanavalin A Molecules. Biomacromolecules, 2006, 7, 1806-1810.	2.6	27

#	Article	IF	Citations
343	Poly(l-lactide)/starch blends compatibilized with poly(l-lactide)-g-starch copolymer. Carbohydrate Polymers, 2006, 65, 75-80.	5.1	96
344	Preparation of block copolymer of É>-caprolactone and 2-methyl-2-carboxyl-propylene carbonate. Polymer, 2005, 46, 2817-2824.	1.8	48
345	Novel biodegradable poly(ethylene glycol)-block-poly(2-methyl-2-carboxyl-propylene carbonate) copolymers: Synthesis, characterization, and micellization. Polymer, 2005, 46, 10523-10530.	1.8	32
346	Phosphatidylinositol transfer protein function in the yeast Saccharomyces cerevisiae. Advances in Enzyme Regulation, 2005, 45, 155-170.	2.9	30
347	A new format of bispecific antibody: highly efficient heterodimerization, expression and tumor cell lysis. Journal of Immunological Methods, 2005, 296, 95-101.	0.6	31
348	Synthesis and characterization of novel biotinylated biodegradable poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 1	0 Tf 50 54 4.1	2 <u>7</u> 4 (glycol)
349	Synthesis and Characterization of Biodegradable Amphiphilic Triblock Copolymers Containingl-Glutamic Acid Units. Biomacromolecules, 2005, 6, 1954-1960.	2.6	39
350	The difference of binding epitopes on human CD16 (Fcl³RIII) interacted with hIgG1 and monoclonal antibody B88-9. Molecular Immunology, 2004, 41, 93-98.	1.0	6
351	A trivalent anti-erbB2/anti-CD16 bispecific antibody retargeting NK cells against human breast cancer cells. Biochemical and Biophysical Research Communications, 2003, 311, 307-312.	1.0	22
352	Activity of Specific Lipid-regulated ADP Ribosylation Factor-GTPase–activating Proteins Is Required for Sec14p-dependent Golgi Secretory Function in Yeast. Molecular Biology of the Cell, 2002, 13, 2193-2206.	0.9	78
353	Activity of Specific Lipid-regulated ADP Ribosylation Factor-GTPase-activating Proteins Is Required for Sec14p-dependent Golgi Secretory Function in Yeast. Molecular Biology of the Cell, 2002, 13, 2193-2206.	0.9	72
354	Evidence for an Intrinsic Toxicity of Phosphatidylcholine to Sec14p-dependent Protein Transport from the Yeast Golgi Complex. Molecular Biology of the Cell, 2001, 12, 1117-1129.	0.9	60
355	Identification of a Novel Family of Nonclassic Yeast Phosphatidylinositol Transfer Proteins Whose Function Modulates Phospholipase D Activity and Sec14p-independent Cell Growth. Molecular Biology of the Cell, 2000, 11, 1989-2005.	0.9	140
356	Pleiotropic Alterations in Lipid Metabolism in Yeast <i>sac1</i> Mutants: Relationship to "Bypass Sec14p― and Inositol Auxotrophy. Molecular Biology of the Cell, 1999, 10, 2235-2250.	0.9	138
357	Yeast Sec14p Deficient in Phosphatidylinositol Transfer Activity Is Functional In Vivo. Molecular Cell, 1999, 4, 187-197.	4.5	131