List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/860488/publications.pdf Version: 2024-02-01

FENC-YU ZHAO

#	Article	IF	CITATIONS
1	Cyclic oligourea synthesized from CO2: Purification, characterization and properties. Green Energy and Environment, 2022, 7, 477-484.	8.7	3
2	A self-healing and recyclable poly(urea-imine) thermoset synthesized from CO ₂ . Green Chemistry, 2022, 24, 1561-1569.	9.0	21
3	Efficient hydrodeoxygenation of guaiacol to phenol over Ru/Ti–SiO ₂ catalysts: the significance of defect-rich TiO _{<i>x</i>} species. Green Chemistry, 2022, 24, 5822-5834.	9.0	18
4	Hydrogenation of biomass lactones to diols over CuLax/γ-Al2O3 catalyst:The promoting role of LaOx. Applied Catalysis B: Environmental, 2022, 317, 121689.	20.2	6
5	A self-healing and recyclable polyurethane-urea Diels–Alder adduct synthesized from carbon dioxide and furfuryl amine. Green Chemistry, 2021, 23, 552-560.	9.0	76
6	Chlorine-Modified Ru/TiO ₂ Catalyst for Selective Guaiacol Hydrodeoxygenation. ACS Sustainable Chemistry and Engineering, 2021, 9, 3083-3094.	6.7	40
7	Photocatalytic Reduction of Aromatic Nitro Compounds with Ag/Ag _{<i>x</i>} S Composites under Visible Light Irradiation. Journal of Physical Chemistry C, 2021, 125, 26021-26030.	3.1	8
8	Hydrodeoxygenation of ethyl stearate over Re-promoted Ru/TiO ₂ catalysts: rate enhancement and selectivity control by the addition of Re. Catalysis Science and Technology, 2020, 10, 222-230.	4.1	17
9	Hydrodeoxygenation of lignin-derived phenolics – a review on the active sites of supported metal catalysts. Green Chemistry, 2020, 22, 8140-8168.	9.0	131
10	New Kind of Thermoplastic Polyurea Elastomers Synthesized from CO ₂ and with Self-Healing Properties. ACS Sustainable Chemistry and Engineering, 2020, 8, 12677-12685.	6.7	18
11	Synthesis of Polyurea Thermoplastics through a Nonisocyanate Route Using CO2 and Aliphatic Diamines. ACS Sustainable Chemistry and Engineering, 2020, 8, 18626-18635.	6.7	14
12	Transformation of γ-valerolactone into 1,4-pentanediol and 2-methyltetrahydrofuran over Zn-promoted Cu/Al ₂ O ₃ catalysts. Catalysis Science and Technology, 2020, 10, 4412-4423.	4.1	28
13	Selective N-Methylation of <i>N</i> -Methylaniline with CO ₂ and H ₂ over TiO ₂ -Supported PdZn Catalyst. ACS Catalysis, 2020, 10, 3285-3296.	11.2	33
14	Seed- and solvent-free synthesis of ZSM-5 with tuneable Si/Al ratios for biomass hydrogenation. Green Chemistry, 2020, 22, 1630-1638.	9.0	17
15	Pt/TiH ₂ Catalyst for Ionic Hydrogenation via Stored Hydrides in the Presence of Gaseous H ₂ . ACS Catalysis, 2019, 9, 6425-6434.	11.2	39
16	<i>In situ</i> synthesis of Ni/NiO composites with defect-rich ultrathin nanosheets for highly efficient biomass-derivative selective hydrogenation. Journal of Materials Chemistry A, 2019, 7, 17834-17841.	10.3	33
17	<i>N</i> â€Methylation of <i>N</i> â€Methylaniline with Carbon Dioxide and Molecular Hydrogen over a Heterogeneous Nonâ€Noble Metal Cu/TiO ₂ Catalyst. ChemCatChem, 2019, 11, 3919-3926.	3.7	19
18	Direct Synthesis of Polyurea Thermoplastics from CO ₂ and Diamines. ACS Applied Materials & amp; Interfaces, 2019, 11, 47413-47421.	8.0	37

#	Article	IF	CITATIONS
19	Synthesis of Polyurea via the Addition of Carbon Dioxide to a Diamine Catalyzed by Organic and Inorganic Bases. Advanced Synthesis and Catalysis, 2019, 361, 317-325.	4.3	33
20	The promoting effects of CO 2 and H 2 O on selective hydrogenations in CO 2 /H 2 O biphasic system. Current Opinion in Green and Sustainable Chemistry, 2018, 10, 46-50.	5.9	3
21	Solvent effects on heterogeneous catalysis in the selective hydrogenation of cinnamaldehyde over a conventional Pd/C catalyst. Catalysis Science and Technology, 2018, 8, 3580-3589.	4.1	49
22	Macroporous–mesoporous carbon supported Ni catalysts for the conversion of cellulose to polyols. Green Chemistry, 2018, 20, 3634-3642.	9.0	19
23	A green process for production of p -aminophenol from nitrobenzene hydrogenation in CO 2 /H 2 O: The promoting effects of CO 2 and H 2 O. Journal of CO2 Utilization, 2017, 18, 229-236.	6.8	7
24	Synthesis of polyureas with CO 2 as carbonyl building block and their high performances. Journal of CO2 Utilization, 2017, 19, 209-213.	6.8	17
25	A Robust Ru/ZSMâ€5 Hydrogenation Catalyst: Insights into the Resistances to Ruthenium Aggregation and Carbon Deposition. ChemCatChem, 2017, 9, 3646-3654.	3.7	33
26	Reductive amination of 1,6-hexanediol with Ru/Al2O3 catalyst in supercritical ammonia. Science China Chemistry, 2017, 60, 920-926.	8.2	18
27	Chemoselective hydrogenation of 3-nitrostyrene to 3-aminostyrene over Pt-Bi/TiO 2 catalysts. Molecular Catalysis, 2017, 432, 23-30.	2.0	27
28	Metal-free catalytic conversion of CO ₂ and glycerol to glycerol carbonate. Green Chemistry, 2017, 19, 1775-1781.	9.0	64
29	Pd and PdZn supported on ZnO as catalysts for the hydrogenation of cinnamaldehyde to hydrocinnamyl alcohol. Molecular Catalysis, 2017, 442, 12-19.	2.0	20
30	Colorless polyimides derived from 2R,5R,7S,10S-naphthanetetracarboxylic dianhydride. Polymer Chemistry, 2017, 8, 6165-6172.	3.9	62
31	Synthesis of polyurea from 1,6-hexanediamine with CO 2 through a two-step polymerization. Green Energy and Environment, 2017, 2, 370-376.	8.7	51
32	Aerobic Catalytic Oxidation of Cyclohexene over TiZrCo Catalysts. Catalysts, 2016, 6, 24.	3.5	13
33	Synthesis of a novel hydrophobic polyurea gel from CO 2 and amino-modified polysiloxane. Journal of CO2 Utilization, 2016, 15, 131-135.	6.8	22
34	A facile strategy for confining ZnPd nanoparticles into a ZnO@Al2O3 support: A stable catalyst for glycerol hydrogenolysis. Journal of Catalysis, 2016, 337, 284-292.	6.2	28
35	PdGa/TiO ₂ an efficient heterogeneous catalyst for direct methylation of N-methylaniline with CO ₂ /H ₂ . RSC Advances, 2016, 6, 103650-103656.	3.6	25
36	Synthesis of polyurethane-urea from double CO ₂ -route oligomers. Green Chemistry, 2016, 18, 3614-3619.	9.0	29

#	Article	IF	CITATIONS
37	Synthesis of Ni/mesoporous ZSM-5 for direct catalytic conversion of cellulose to hexitols: modulating the pore structure and acidic sites via a nanocrystalline cellulose template. Green Chemistry, 2016, 18, 3315-3323.	9.0	55
38	Hydrogenation of levulinic acid by RuCl ₂ (PPh ₃) ₃ in supercritical CO ₂ : the significance of structural changes of Ru complexes via interaction with CO ₂ . Green Chemistry, 2016, 18, 3370-3377.	9.0	25
39	Highly selective Pt/ordered mesoporous TiO 2 –SiO 2 catalysts for hydrogenation of cinnamaldehyde: The promoting role of Ti 2+. Journal of Colloid and Interface Science, 2016, 463, 75-82.	9.4	58
40	Effect of Phosphine Doping and the Surface Metal State of Ni on the Catalytic Performance of Ni/Al2O3 Catalyst. Catalysts, 2015, 5, 759-773.	3.5	25
41	Metal Catalysts Recycling and Heterogeneous/Homogeneous Catalysis. Catalysts, 2015, 5, 868-870.	3.5	29
42	Utilization of carbon dioxide to build a basic block for polymeric materials: an isocyanate-free route to synthesize a soluble oligourea. RSC Advances, 2015, 5, 42095-42100.	3.6	28
43	ZSM-5-supported multiply-twinned nickel particles: Formation, surface properties, and high catalytic performance in hydrolytic hydrogenation of cellulose. Journal of Catalysis, 2015, 325, 79-86.	6.2	18
44	A stable and active AgxS crystal preparation and its performance as photocatalyst. Chinese Journal of Catalysis, 2015, 36, 564-571.	14.0	10
45	Carbon dioxide-induced homogeneous deposition of nanometer-sized cobalt ferrite (CoFe2O4) on graphene as high-rate and cycle-stable anode materials for lithium-ion batteries. Journal of Power Sources, 2015, 275, 650-659.	7.8	41
46	Selective Hydrogenation of m-Dinitrobenzene to m-Nitroaniline over Ru-SnOx/Al2O3 Catalyst. Catalysts, 2014, 4, 276-288.	3.5	17
47	Selective hydrogenation of o-chloronitrobenzene over anatase-ferric oxides supported Ir nanocomposite catalyst. Journal of Colloid and Interface Science, 2014, 432, 200-206.	9.4	11
48	The hydrogenation/dehydrogenation activity of supported Ni catalysts and their effect on hexitols selectivity in hydrolytic hydrogenation of cellulose. Journal of Catalysis, 2014, 309, 468-476.	6.2	104
49	CO2–expanded ethanol chemical synthesis of a Fe3O4@graphene composite and its good electrochemical properties as anode material for Li-ion batteries. Journal of Materials Chemistry A, 2013, 1, 3954.	10.3	58
50	Facile synthesis of a Co ₃ O ₄ –carbon nanotube composite and its superior performance as an anode material for Li-ion batteries. Journal of Materials Chemistry A, 2013, 1, 1141-1147.	10.3	169
51	Sodium salt effect on hydrothermal carbonization of biomass: a catalyst for carbon-based nanostructured materials for lithium-ion battery applications. Green Chemistry, 2013, 15, 2722.	9.0	61
52	Coating of Al2O3 on layered Li(Mn1/3Ni1/3Co1/3)O2 using CO2 as green precipitant and their improved electrochemical performance for lithium ion batteries. Journal of Energy Chemistry, 2013, 22, 468-476.	12.9	10
53	The effect of water on the hydrogenation of o-chloronitrobenzene in ethanol, n-heptane and compressed carbon dioxide. Applied Catalysis A: General, 2013, 455, 8-15.	4.3	25
54	High performance of Ir-promoted Ni/TiO2 catalyst toward the selective hydrogenation of cinnamaldehyde. Journal of Catalysis, 2013, 303, 110-116.	6.2	132

#	Article	IF	CITATIONS
55	Polyureas from diamines and carbon dioxide: synthesis, structures and properties. Physical Chemistry Chemical Physics, 2012, 14, 464-468.	2.8	72
56	One-step hydrothermal synthesis of SnS2/graphene composites as anode material for highly efficient rechargeable lithium ion batteries. RSC Advances, 2012, 2, 5084.	3.6	115
57	Fine control of titania deposition to prepare C@TiO2 composites and TiO2 hollow particles for photocatalysis and lithium-ion battery applications. Journal of Materials Chemistry, 2012, 22, 22135.	6.7	61
58	Selective reduction of phenol derivatives to cyclohexanones in water under microwave irradiation. New Journal of Chemistry, 2012, 36, 1085.	2.8	52
59	Highly selective and efficient catalytic conversion of ethyl stearate into liquid hydrocarbons over a Ru/TiO2 catalyst under mild conditions. Catalysis Science and Technology, 2012, 2, 1328.	4.1	20
60	Selective conversion of microcrystalline cellulose into hexitols on nickel particles encapsulated within ZSM-5 zeolite. Green Chemistry, 2012, 14, 2146.	9.0	67
61	Knitting an oxygenated network-coat on carbon nanotubes from biomass and their applications in catalysis. Journal of Materials Chemistry, 2011, 21, 10929.	6.7	26
62	Steaming multiwalled carbon nanotubes via acid vapour for controllable nanoengineering and the fabrication of carbon nanoflutes. Chemical Communications, 2011, 47, 5223.	4.1	70
63	A new strategy for finely controlling the metal (oxide) coating on colloidal particles with tunable catalytic properties. Journal of Materials Chemistry, 2011, 21, 6654.	6.7	26
64	An effective medium of H2O and low-pressure CO2 for the selective hydrogenation of aromatic nitro compounds to anilines. Green Chemistry, 2011, 13, 570.	9.0	51
65	Selective conversion of concentrated microcrystalline cellulose to isosorbide over Ru/C catalyst. Green Chemistry, 2011, 13, 839.	9.0	80
66	CO2-assisted template synthesis of porous hollow bi-phase γ-/α-Fe2O3 nanoparticles with high sensor property. Journal of Materials Chemistry, 2011, 21, 17776.	6.7	58
67	Selective hydrogenation of citral over Au-based bimetallic catalysts in supercritical carbon dioxide. Science China Chemistry, 2010, 53, 1571-1577.	8.2	7
68	Selective hydrogenation of chloronitrobenzene to chloroaniline in supercritical carbon dioxide over Ni/TiO2: Significance of molecular interactions. Journal of Catalysis, 2010, 269, 131-139.	6.2	92
69	Transfer hydrogenation of citral to citronellol with Ru complexes in the mixed solvent of water and polyethylene glycol. Applied Organometallic Chemistry, 2010, 24, 763-766.	3.5	16
70	Theoretical study on interaction between CO2 and carbonyl compounds: Influence of CO2 on infrared spectroscopy and activity of CO. Journal of Supercritical Fluids, 2010, 54, 9-15.	3.2	29
71	Hydrogenation of phenol with supported Rh catalysts in the presence of compressed CO2: Its effects on reaction rate, product selectivity and catalyst life. Journal of Supercritical Fluids, 2010, 54, 190-201.	3.2	44
72	Synthesis of urea derivatives from amines and CO2 in the absence of catalyst and solvent. Green Chemistry, 2010, 12, 1811.	9.0	144

#	Article	IF	CITATIONS
73	One-pot synthesis of flowerlike Ni7S6and its application in selective hydrogenation of chloronitrobenzene. Journal of Materials Chemistry, 2010, 20, 1078-1085.	6.7	75
74	A green and efficient route for preparation of supported metal colloidal nanoparticles in scCO2. Green Chemistry, 2010, 12, 1417.	9.0	8
75	Selective hydrogenation of nitrobenzene to aniline in dense phase carbon dioxide over Ni/γ-Al2O3: Significance of molecular interactions. Journal of Catalysis, 2009, 264, 1-10.	6.2	138
76	Selective hydrogenation of citral catalyzed with palladium nanoparticles in CO2-in-water emulsion. Green Chemistry, 2009, 11, 979.	9.0	28
77	Cyclization of citronellal to p-menthane-3,8-diols in water and carbon dioxide. Green Chemistry, 2009, 11, 1227.	9.0	31
78	Selective hydrogenation of unsaturated aldehydes in a poly(ethylene glycol)/compressed carbon dioxide biphasic system. Green Chemistry, 2008, 10, 1082.	9.0	26
79	Selective hydrogenation of cinnamaldehyde using ruthenium–phosphine complex catalysts with multiphase reaction systems in and under pressurized carbon dioxide: Significance of pressurization and interfaces for the control of selectivity. Journal of Catalysis, 2005, 236, 101-111.	6.2	36
80	Hydrogenation of Benzaldehyde and Cinnamaldehyde in Compressed CO2Medium with a Pt/C Catalyst:Â A Study on Molecular Interactions and Pressure Effects. Journal of Physical Chemistry A, 2005, 109, 4419-4424.	2.5	71
81	Synthesis of styrene carbonate from styrene oxide and carbon dioxide in the presence of zinc bromide and ionic liquid under mild conditions. Green Chemistry, 2004, 6, 613.	9.0	219
82	Carbon dioxide-expanded liquid substrate phase: an effective medium for selective hydrogenation of cinnamaldehyde to cinnamyl alcohol. Chemical Communications, 2004, , 2326.	4.1	54
83	Heck Reactions of Iodobenzene and Methyl Acrylate with Conventional Supported Palladium Catalysts in the Presence of Organic and/or Inorganic Bases without Ligands. Chemistry - A European Journal, 2000, 6, 843-848.	3.3	292
84	Influence of BrÃ,nsted acid sites on the product distribution in the hydrodeoxygenation of methyl laurate over supported Ru catalysts. Catalysis Science and Technology, 0, , .	4.1	0