List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8604875/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Preparation of water-dispersible Janus nanosheets from K4Nb6O17·3H2O and their behaviour as a two-dimensional surfactant on air–water and water-toluene interfaces. Dalton Transactions, 2022, , .	3.3	2
2	Development of Chemical Synthesis Methods Based on Fusion of Inorganic and Organic Chemistry for Ceramic Powder Preparation and Surface Modification Methods of Nanoparticles and Nanosheets. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2022, 69, 13-21.	0.2	1
3	Preparation of double-layered nanosheets containing pH-responsive polymer networks in the interlayers and their conversion into single-layered nanosheets through the cleavage of cross-linking points. Dalton Transactions, 2022, 51, 6264-6274.	3.3	1
4	Loss of a membrane phase under soft confinement conditions imposed by a porous silica colloids network. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 608, 125554.	4.7	0
5	A novel approach to characterization of a relatively unstable intercalation compound under ambient conditions: revisiting a kaolinite-acetone intercalation compound. Dalton Transactions, 2021, 50, 6290-6296.	3.3	2
6	Free-standing membranes from the chemical exfoliation of mesoporous amorphous titania thin film. Chemical Communications, 2021, 57, 7513-7516.	4.1	2
7	Single Atomâ€Based Nanoarchitectured Electrodes for Highâ€Performance Lithium–Sulfur Batteries. Advanced Materials Interfaces, 2021, 8, 2002159.	3.7	22
8	A kaolinite-tetrabutylphosphonium bromide intercalation compound as an effective intermediate for intercalation of bulky organophosphonium salts. Applied Clay Science, 2021, 206, 106038.	5.2	4
9	Electrochemical energy storage performance of 2D nanoarchitectured hybrid materials. Nature Communications, 2021, 12, 3563.	12.8	62
10	Nanoarchitecturing Carbon Nanodot Arrays on Zeolitic Imidazolate Framework <i>-</i> Derived Cobalt <i>–</i> Nitrogen <i>-</i> Doped Carbon Nanoflakes toward Oxygen Reduction Electrocatalysts. ACS Nano, 2021, 15, 13240-13248.	14.6	38
11	Intercalation of a Cationic Cyanine Dye Assisted by Anionic Surfactants within Mg–Al Layered Double Hydroxide. ACS Omega, 2021, 6, 23837-23845.	3.5	4
12	Heterostructuring Mesoporous 2D Iridium Nanosheets with Amorphous Nickel Boron Oxide Layers to Improve Electrolytic Water Splitting. Small Methods, 2021, 5, e2100679.	8.6	40
13	Ni-Doped Protonated Layered Titanate/TiO2 Composite with Efficient Photocatalytic Activity for NO $ x $ Decomposition Reactions. International Journal of Photoenergy. 2021, 2021, 1-9.	2.5	4
14	Preparation of biocompatible hydrogels reinforced by different nanosheets. RSC Advances, 2021, 12, 753-761.	3.6	2
15	Tuning down the environmental interests of organoclays for emerging pollutants: Pharmaceuticals in presence of electrolytes. Chemosphere, 2020, 239, 124730.	8.2	16
16	Holey Assembly of Twoâ€Dimensional Ironâ€Doped Nickelâ€Cobalt Layered Double Hydroxide Nanosheets for Energy Conversion Application. ChemSusChem, 2020, 13, 1645-1655.	6.8	104
17	Preparation of Nb-doped TiO2 nanopowder by liquid-feed spray pyrolysis followed by ammonia annealing for tunable visible-light absorption and inhibition of photocatalytic activity. Ceramics International, 2020, 46, 1314-1322.	4.8	22
18	Stabilization of self-assembled lipids in exfoliated organo-nanosheets. Chemical Physics Letters, 2020, 739, 136954.	2.6	0

#	Article	IF	CITATIONS
19	Highly Efficient Surface Modification of Layered Perovskite Nanosheets with a Phosphorus Coupling Reagent Making Use of Microchannels. Langmuir, 2020, 36, 7252-7258.	3.5	4
20	Dual-functional Janus Nanosheets with Cation Exchangeability and Thermo-responsiveness Prepared via Regioselective Modification of K ₄ Nb ₆ O ₁₇ ·3H ₂ O. Chemistry Letters, 2020, 49, 1058-1061.	1.3	4
21	Mesoporous Iron-doped MoS ₂ /CoMo ₂ S ₄ Heterostructures through Organic–Metal Cooperative Interactions on Spherical Micelles for Electrochemical Water Splitting. ACS Nano, 2020, 14, 4141-4152.	14.6	156
22	Use of a clay mineral and its nonionic and cationic organoclay derivatives for the removal of pharmaceuticals from rural wastewater effluents. Chemosphere, 2020, 259, 127480.	8.2	27
23	Phosphorus- and Nitrogen-Doped Carbon Nanosheets Constructed with Monolayered Mesoporous Architectures. Chemistry of Materials, 2020, 32, 4248-4256.	6.7	41
24	Multiscale structural optimization: Highly efficient hollow iron-doped metal sulfide heterostructures as bifunctional electrocatalysts for water splitting. Nano Energy, 2020, 75, 104913.	16.0	119
25	Crystalline Porous Organic Polymer Bearing â^'SO ₃ H Functionality for High Proton Conductivity. ACS Sustainable Chemistry and Engineering, 2020, 8, 2423-2432.	6.7	43
26	Preparation and Comparative Stability of a Kaolinite-Tetrabutylphosphonium Bromide Intercalation Compound for Heat and Solvent Treatments. Langmuir, 2019, 35, 13553-13561.	3.5	10
27	Pore shape-reflecting morphosynthesis of lithium niobium oxide <i>via</i> mixed chloride flux growth in the presence of mesoporous silica. Nanoscale Advances, 2019, 1, 1726-1730.	4.6	1
28	Preparation of inorganic-organic hybrid gels by radical exchange reaction using TiO2 nanoparticles modified with organophosphonic acid bearing C-ON bonds. Materials Today: Proceedings, 2019, 16, 180-186.	1.8	0
29	Rational design and construction of nanoporous iron- and nitrogen-doped carbon electrocatalysts for oxygen reduction reaction. Journal of Materials Chemistry A, 2019, 7, 1380-1393.	10.3	159
30	Preparation of Fe3O4 nanoparticles modified with n-dodecylphosphonic acid via a one-pot nonaqueous process using an oxidation reaction of tetrachloroferrate (III) anions by pyridine-N-oxide. Materials Research Bulletin, 2019, 118, 110475.	5.2	2
31	Interlayer grafting of kaolinite using trimethylphosphate. Dalton Transactions, 2019, 48, 11663-11673.	3.3	16
32	Surface Modification of Layered Perovskite Nanosheets with a Phosphorus Coupling Reagent in a Biphasic System. Langmuir, 2019, 35, 6594-6601.	3.5	7
33	Nanoarchitectonics for Transitionâ€Metalâ€Sulfideâ€Based Electrocatalysts for Water Splitting. Advanced Materials, 2019, 31, e1807134.	21.0	998
34	Chemical Design of Palladiumâ€Based Nanoarchitectures for Catalytic Applications. Small, 2019, 15, e1804378.	10.0	90
35	Continuous mesoporous Pd films with tunable pore sizes through polymeric micelle-assisted assembly. Nanoscale Horizons, 2019, 4, 960-968.	8.0	26
36	Biomoleculeâ€Assisted Synthesis of Hierarchical Multilayered Boehmite and Alumina Nanosheets for Enhanced Molybdenum Adsorption. Chemistry - A European Journal, 2019, 25, 4843-4855.	3.3	16

#	Article	IF	CITATIONS
37	Nonaqueous synthesis of magnetite nanoparticles via oxidation of tetrachloroferrate anions by pyridine-N-oxide. Solid State Sciences, 2019, 92, 81-88.	3.2	5
38	Organic-Inorganic Hybrid Materials. , 2019, , 213-233.		1
39	Preparation of Element-Block Materials Using Inorganic Nanostructures and Their Applications. , 2019, , 219-241.		0
40	General template-free strategy for fabricating mesoporous two-dimensional mixed oxide nanosheets <i>via</i> self-deconstruction/reconstruction of monodispersed metal glycerate nanospheres. Journal of Materials Chemistry A, 2018, 6, 5971-5983.	10.3	81
41	Controlled Chemical Vapor Deposition for Synthesis of Nanowire Arrays of Metal–Organic Frameworks and Their Thermal Conversion to Carbon/Metal Oxide Hybrid Materials. Chemistry of Materials, 2018, 30, 3379-3386.	6.7	264
42	Distribution Control-Oriented Intercalation of a Cationic Metal Complex into Layered Silicates Modified with Organosulfonic-Acid Moieties. Langmuir, 2018, 34, 4762-4773.	3.5	7
43	Competitive Association of Antibiotics with a Clay Mineral and Organoclay Derivatives as a Control of Their Lifetimes in the Environment. ACS Omega, 2018, 3, 15332-15342.	3.5	29
44	Phosphorus-Based Mesoporous Materials for Energy Storage and Conversion. Joule, 2018, 2, 2289-2306.	24.0	65
45	Hollow Porous Heterometallic Phosphide Nanocubes for Enhanced Electrochemical Water Splitting. Small, 2018, 14, e1802442.	10.0	166
46	Solid-State ³¹ P Nuclear Magnetic Resonance Study of Interlayer Hydroxide Surfaces of Kaolinite Probed with an Interlayer Triethylphosphine Oxide Monolayer. Langmuir, 2018, 34, 12694-12701.	3.5	26
47	Inorganic Janus nanosheets bearing two types of covalently bound organophosphonate groups <i>via</i> regioselective surface modification of K ₄ Nb ₆ O ₁₇ ·3H ₂ O. Chemical Communications, 2018, 54, 5756-5759.	4.1	18
48	Two-dimensional mesoporous vanadium phosphate nanosheets through liquid crystal templating method toward supercapacitor application. Nano Energy, 2018, 52, 336-344.	16.0	65
49	Preparation of 3D open ordered mesoporous carbon single-crystals and their structural evolution during ammonia activation. Chemical Communications, 2018, 54, 9494-9497.	4.1	15
50	Effects of nanostructured biosilica on rice plant mechanics. RSC Advances, 2017, 7, 13065-13071.	3.6	20
51	Area-selective Surface Modification of Si Substrates with a Fluorescent Organophosphonic Acid Using the Differences in Reactivities of Their Surface Terminal Groups. Chemistry Letters, 2017, 46, 1010-1013.	1.3	0
52	Room-Temperature Rutile TiO ₂ Nanoparticle Formation on Protonated Layered Titanate for High-Performance Heterojunction Creation. ACS Applied Materials & Interfaces, 2017, 9, 24538-24544.	8.0	27
53	Enantioselective incorporation of dicarboxylate guests by octacalcium phosphate. Chemical Communications, 2017, 53, 6524-6527.	4.1	16
54	Synthesis of TiO ₂ -Polythiophene Hybrid Nanotubes and Their Porphyrin Composites. Chemistry Letters, 2017, 46, 354-356.	1.3	1

#	Article	IF	CITATIONS
55	Modification of TiO ₂ Nanoparticles with Oleyl Phosphate via Phase Transfer in the Toluene–Water System and Application of Modified Nanoparticles to Cyclo-Olefin-Polymer-Based Organic–Inorganic Hybrid Films Exhibiting High Refractive Indices. ACS Applied Materials & Interfaces, 2017, 9, 1907-1912.	8.0	19
56	Synthesis of mesostructured manganese phosphonate and its promising energy storage application. Journal of Materials Chemistry A, 2017, 5, 23259-23266.	10.3	24
57	Effect of the graft density of cellulose diacetate-modified layered perovskite nanosheets on mechanical properties of the transparent organic–inorganic hybrids bearing covalent bonds at the interface. Cellulose, 2017, 24, 5463-5473.	4.9	7
58	Borophosphonate Cages as Element-blocks: Ab Initio Calculation of the Electronic Structure of a Simple Borophosphonate, [HPO ₃ BH] ₄ , and Synthesis of Two Novel Borophosphonate Cages with Polymerizable Groups. Chemistry Letters, 2017, 46, 181-184.	1.3	4
59	Preparation of Element Block by Surface Modification of Magnetite Nanoparticles and Their Application. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2017, 64, 116-120.	0.2	1
60	Remarkable Charge Separation and Photocatalytic Efficiency Enhancement through Interconnection of TiO ₂ Nanoparticles by Hydrothermal Treatment. Angewandte Chemie, 2016, 128, 3664-3669.	2.0	16
61	Preparation of Transparent Bulk TiO ₂ /PMMA Hybrids with Improved Refractive Indices via an in Situ Polymerization Process Using TiO ₂ Nanoparticles Bearing PMMA Chains Grown by Surface-Initiated Atom Transfer Radical Polymerization. ACS Applied Materials & amp; Interfaces, 2016. 8. 34762-34769.	8.0	28
62	Unprecedentedly enhanced solar photocatalytic activity of a layered titanate simply integrated with TiO ₂ nanoparticles. Physical Chemistry Chemical Physics, 2016, 18, 30920-30925.	2.8	32
63	Crystallization behavior of cubic boron nitride from an amorphous BN precursor via high-pressure, high-temperature treatment with controlled water addition. Journal of the European Ceramic Society, 2016, 36, 3565-3569.	5.7	6
64	Intercalation of <i>n</i> -alkylamines and alkylene diamines into carboxyl functionalized lamellar-type silsesquioxane. Journal of the Ceramic Society of Japan, 2016, 124, 1090-1093.	1.1	0
65	Remarkable Charge Separation and Photocatalytic Efficiency Enhancement through Interconnection of TiO ₂ Nanoparticles by Hydrothermal Treatment. Angewandte Chemie - International Edition, 2016, 55, 3600-3605.	13.8	116
66	Preparation of Thermoresponsive Nanosheets Exhibiting Phase Transitions in Water via Surface Modification of Layered Perovskite Nanosheets with Poly(<i>N</i> -isopropylacrylamide) (PNIPAAm). Chemistry Letters, 2015, 44, 203-205.	1.3	25
67	Preparation of Oleyl Phosphate-Modified TiO _{2} /Poly(methyl methacrylate) Hybrid Thin Films for Investigation of Their Optical Properties. Journal of Nanomaterials, 2015, 2015, 1-7.	2.7	13
68	Temperature dependence of Ce:YAG single-crystal phosphors for high-brightness white LEDs/LDs. Materials Research Express, 2015, 2, 055503.	1.6	105
69	Intercalation of triethylphosphine oxide bearing a phosphoryl group into Dion–Jacobson-type ion-exchangeable layered perovskites. Dalton Transactions, 2015, 44, 3002-3008.	3.3	9
70	Ce:(Y\$_{1-x}\$Lu\$_{x}\$)\$_{3}\$Al\$_{5}\$O\$_{12}\$ single-crystal phosphor plates for high-brightness white LEDs/LDs with high-color rendering (<i>Ra</i> > 90) and temperature stability. Materials Research Express, 2014, 1, 025041.	1.6	32
71	Layered perovskite nanosheets bearing fluoroalkoxy groups: their preparation and application in epoxy-based hybrids. RSC Advances, 2014, 4, 26932-26939.	3.6	18
72	Single- and Double-Layered Organically Modified Nanosheets by Selective Interlayer Grafting and Exfoliation of Layered Potassium Hexaniobate. Langmuir, 2014, 30, 1169-1175.	3.5	44

#	Article	IF	CITATIONS
73	Chemical processes employing inorganic layered compounds for inorganic and inorganic–organic hybrid materials. Journal of the Ceramic Society of Japan, 2014, 122, 523-529.	1.1	17
74	Preparation of water-dispersible TiO2 nanoparticles from titanium tetrachloride using urea hydrogen peroxide as an oxygen donor. CrystEngComm, 2013, 15, 10533.	2.6	16
75	Analysis of disordered nonstoichiometric Ln1–xAexF3–x (Ln = Tb or Gd, and Ae = Ca or Sr) single crystals. Zeitschrift Fur Kristallographie - Crystalline Materials, 2013, 228, .	0.8	0
76	Epoxyâ€based hybrids using TiO ₂ nanoparticles prepared via a nonâ€hydrolytic sol–gel route. Applied Organometallic Chemistry, 2013, 27, 673-677.	3.5	23
77	Properties of Czochralski grown Ce,Gd:Y3Al5O12 single crystal for white light-emitting diode. Journal of Alloys and Compounds, 2013, 553, 89-92.	5.5	65
78	Microstructural behavior of γ-Fe2O3 formation in reactions between layered iron oxychloride and sodium n-pentoxide. Solid State Sciences, 2013, 19, 156-161.	3.2	6
79	UV-Visible Faraday Rotators Based on Rare-Earth Fluoride Single Crystals: LiREF ₄ (RE=Tb,) Tj ETQq1	1 0.78431 0.4	4 rgBT /Over
80	Effects of structural differences in starting materials on the formation behavior of cubic silicon nitride by shock compression. Journal of the Ceramic Society of Japan, 2013, 121, 741-744.	1.1	3
81	Characterization of gas barrier silica coatings prepared from perhydropolysilazane films by vacuum ultraviolet irradiation. Journal of the Ceramic Society of Japan, 2013, 121, 215-218.	1.1	15
82	Preparation of LiClO4-doped Titanium Organodiphosphonates Possessing Oligomeric Ethylene Oxide Chains and Their Ionic Conductivity. Chemistry Letters, 2013, 42, 318-320.	1.3	0
83	Variation of Chemical Vapor Deposited SiO\$_{2}\$ Density Due to Generation and Shrinkage of Open Space During Thermal Annealing. Japanese Journal of Applied Physics, 2012, 51, 021101.	1.5	9
84	UV-visible Faraday rotators based on rare-earth fluoride single crystals: LiREF_4 (RE = Tb, Dy, Ho, Er) Tj ETQq0 0 C) rgBT /Ove	erlgçk 10 Tf 5
85	Synthesis of spherical aggregates of leaf-like YPO ₄ particles via hydrolysis of tri- <i>n</i> -butylphosphate. Journal of the Ceramic Society of Japan, 2012, 120, 204-206.	1.1	0
86	Preparation of α-Zirconium Phosphate from Fluorozirconate and Phosphoric Acid by Liquid-phase Deposition. Chemistry Letters, 2012, 41, 555-557.	1.3	7
87	Sol–Gel-derived Bridged Polysilsesquioxane as a Hydrogen Peroxide Decomposition Catalyst: Immobilization of a Dimanganese Complex and Its Improved Thermal Stability. Chemistry Letters, 2012, 41, 591-592.	1.3	0
88	Preparation of epoxy-based hybrid films from an aqueous TiO2 dispersion via solvent exchange and surface modification with n-octylphosphonic acid. Composite Interfaces, 2012, 19, 593-601.	2.3	4
89	Variation of Chemical Vapor Deposited SiO2Density Due to Generation and Shrinkage of Open Space During Thermal Annealing. Japanese Journal of Applied Physics, 2012, 51, 021101.	1.5	0
90	Smoothing of surface of silica glass by heat treatment in wet atmosphere. Journal of Applied Physics, 2011, 109, .	2.5	5

#	Article	IF	CITATIONS
91	Hydrolysis behavior of a precursor for bridged polysilsesquioxane 1,4-bis(triethoxysilyl)benzene: a 29Si NMR study. Journal of Sol-Gel Science and Technology, 2011, 57, 51-56.	2.4	15
92	Formation of SiON networks from silsesquiazanes. Applied Organometallic Chemistry, 2010, 24, 608-611.	3.5	2
93	Preparation of Phenylsilsesquioxane Films from Phenylsilsesquiazane Possessing Si–N Backbones. Science of Advanced Materials, 2010, 2, 195-199.	0.7	2
94	Improvement of Dielectric Properties on Deposited SiO2Caused by Stress Relaxation with Thermal Annealing. Japanese Journal of Applied Physics, 2009, 48, 05DB03.	1.5	9
95	Interlayer surface modification of the protonated ion-exchangeable layered perovskite HLaNb ₂ O ₇ • <i>x</i> H ₂ O with organophosphonic acids. Chemistry of Materials, 2009, 21, 4155-4162.	6.7	52
96	Suppression of Leakage Current of Deposited SiO ₂ with Bandgap Increasing by High Temperature Annealing. ECS Transactions, 2009, 19, 403-413.	0.5	8
97	An Inorganic–Organic Hybrid Possessing a Two-dimensional Ti–O Network and Surface Ethoxy Groups Prepared via a Reaction of Titanium Oxychloride with Lithium Ethoxide. Chemistry Letters, 2009, 38, 244-245.	1.3	2
98	Size―and Shape ontrolled Conversion of Tungstateâ€Based Inorganic–Organic Hybrid Belts to WO ₃ Nanoplates with High Specific Surface Areas. Small, 2008, 4, 1813-1822.	10.0	183
99	Modification of perhydropolysilazane with aluminum hydride: Preparation of poly(aluminasilazane)s and their conversion into Si–Al–N–C ceramics. Journal of the European Ceramic Society, 2008, 28, 271-277.	5.7	11
100	Organic derivatives of the layered perovskite HLaNb2O7·xH2O with polyether chains on the interlayer surface: characterization, intercalation of LiClO4, and ionic conductivity. Journal of Materials Chemistry, 2008, 18, 3581.	6.7	26
101	Preparation of Precursors for Aluminum Nitride-Based Ceramic Composites from Cage-Type and Cyclic Building Blocks. Key Engineering Materials, 2008, 403, 249-250.	0.4	0
102	Investigation of Factors Influencing the Formation of Tungstate-Based Inorganic-Organic Hybrid Nanobelts/Nanotubes. Key Engineering Materials, 2007, 352, 85-88.	0.4	4
103	Preparation of a Reduced Layered Tungstic Acid HxW2O7 via Acid Treatment of Bi2W2O9 in the Presence of Sn2+ Ions. Materials Research Society Symposia Proceedings, 2007, 1056, 1.	0.1	1
104	Surface Modification of Titania Particles with Urushiol (Japanese Lacquer) and Its Application to the Preparation of Polymer–Titania Hybrids. Chemistry Letters, 2007, 36, 856-857.	1.3	13
105	Reactivity of the Ruddlesdenâ^'Popper Phase H2La2Ti3O10with Organic Compounds:Â Intercalation and Grafting Reactions. Chemistry of Materials, 2007, 19, 2352-2358.	6.7	65
106	Tungstate-Based Inorganicâ^'Organic Hybrid Nanobelts/Nanotubes with Lamellar Mesostructures: Synthesis, Characterization, and Formation Mechanism. Chemistry of Materials, 2007, 19, 1808-1815.	6.7	59
107	Luminescence of Tris(2,2â€ [~] -bipyridine)ruthenium(II) Cations ([Ru(bpy)3]2+) Adsorbed in Mesoporous Silicas Modified with Sulfonated Phenethyl Group. Journal of Physical Chemistry B, 2007, 111, 8836-8841.	2.6	32
108	Characterization of Bi5Nb3O15 by refinement of neutron diffraction pattern, acid treatment and reaction of the acid-treated product with n-alkylamines. Journal of Solid State Chemistry, 2007, 180, 2517-2524.	2.9	35

#	Article	IF	CITATIONS
109	Preparation of Si-Al-N-C Ceramic Composites by Pyrolysis of Blended Precursors. Journal of the Ceramic Society of Japan, 2006, 114, 497-501.	1.3	14
110	Organic-to-Inorganic Conversion Process of a Cage-Type AlN Precursor Poly(ethyliminoalane). Journal of the Ceramic Society of Japan, 2006, 114, 563-566.	1.3	8
111	Intercalation of α,ω-Diaminoalkanes in the Interlayer Space of the Protonated Form of the Layered Perovskite H1.8Bi0.2Sr0.8Ta2O7. Chemistry Letters, 2006, 35, 1292-1293.	1.3	7
112	One-Pot Synthesis of Soluble Precursors Possessing Both Al–N and B–N Backbones and Their Pyrolysis. Bulletin of the Chemical Society of Japan, 2006, 79, 1681-1687.	3.2	2
113	Pyrolytic Organic-to-Inorganic Conversion of Precursors into AlN-A Review. Journal of the Ceramic Society of Japan, 2006, 114, 461-472.	1.3	14
114	Preparation and pyrolysis of poly(allyl iminoalane-co-ethyl iminoalane)s [HAlN(allyl)]m[HAlNEt]n. Journal of Organometallic Chemistry, 2006, 691, 4289-4296.	1.8	6
115	Preparation of a nanocomposite consisting of a siloxane network and perovskite-related nanosheets via a sol–gel process. Science and Technology of Advanced Materials, 2006, 7, 446-450.	6.1	9
116	Local environments and dynamics of hydrogen atoms in protonated forms of ion-exchangeable layered perovskites estimated by solid-state 1H NMR. Journal of Solid State Chemistry, 2006, 179, 3357-3364.	2.9	16
117	Preparation of a novel organic derivative of the layered perovskite bearing HLaNb2O7·nH2O interlayer surface trifluoroacetate groups. Materials Research Bulletin, 2006, 41, 834-841.	5.2	31
118	Pyrolytic conversion of an AlSiNC precursor prepared via hydrosilylation between [Me(H)SiNH]4 and [HAlN(allyl)]m[HAlN(ethyl)]n. Applied Organometallic Chemistry, 2006, 20, 527-534.	3.5	8
119	Preparation of Organicâ^'Inorganic Hybrids Possessing Nanosheets with Perovskite-Related Structures via Exfoliation during a Solâ^'Gel Process. Chemistry of Materials, 2005, 17, 6198-6204.	6.7	47
120	Hydrolysis and Condensation Processes of Titanium iso-Propoxide Modified with Catechol: An NMR Study. Journal of Sol-Gel Science and Technology, 2004, 30, 83-88.	2.4	3
121	Effects of selective leaching of bismuth oxide sheets in triple-layered Aurivillius phases on their photocatalytic activities. Chemical Physics Letters, 2004, 393, 12-16.	2.6	21
122	A Layered Tungstic Acid H2W2O7×nH2O with a Double-Octahedral Sheet Structure: Conversion Process from an Aurivillus Phase Bi2W2O9 and Structural Characterization ChemInform, 2003, 34, no.	0.0	0
123	Hydrosilylation in the 2D interlayer space between inorganic layers: reaction between immobilized Cr̃C groups on the interlayer surface of layered perovskite HLaNb2O7·xH2O and chlorohydrosilanes. Journal of Organometallic Chemistry, 2003, 686, 145-150.	1.8	16
124	Interlayer Surface Modification of the Protonated Triple-Layered Perovskite HCa2Nb3O10·xH2O with n-Alcohols. Langmuir, 2003, 19, 9473-9478.	3.5	63
125	Reactions of Alkoxyl Derivatives of a Layered Perovskite with Alcohols:Â Substitution Reactions on the Interlayer Surface of a Layered Perovskite. Chemistry of Materials, 2003, 15, 636-641.	6.7	53
126	A Layered Tungstic Acid H2W2O7•nH2O with a Double-Octahedral Sheet Structure:  Conversion Process from an Aurivillius Phase Bi2W2O9 and Structural Characterization. Inorganic Chemistry, 2003, 42, 4479-4484.	4.0	53

#	Article	IF	CITATIONS
127	Intercalation Behavior ofn-Alkylamines into a Protonated Form of a Layered Perovskite Derived from Aurivillius Phase Bi2SrTa2O9. Chemistry of Materials, 2003, 15, 632-635.	6.7	101
128	Chemical Modification of Niobium Pentaethoxide with Catechol. Key Engineering Materials, 2003, 247, 401-404.	0.4	2
129	Conversion of Aurivillius Phases Bi2ANaNb3O12(A = Sr or Ca) into the Protonated Forms of Layered Perovskite via Acid Treatment. Chemistry of Materials, 2002, 14, 2946-2952.	6.7	27
130	Conversion Process of Strontium?Titanium Bimetallic Methoxyethoxide Precursor into SrTiO3via Hydrolysis/Calcination. Journal of the American Ceramic Society, 2002, 85, 2195-2199.	3.8	3
131	Conversion of a Precursor Derived from Cageâ€Type and Cyclic Molecular Building Blocks into Alâ€Siâ€Nâ€C Ceramic Composites. Journal of the American Ceramic Society, 2002, 85, 59-64.	3.8	20
132	Synthesis of a kaolinite–poly(β-alanine) intercalation compound. Journal of Materials Chemistry, 2001, 11, 3291-3295.	6.7	60
133	Interlamellar Esterification of H-Magadiite with Aliphatic Alcohols. Chemistry of Materials, 2001, 13, 3747-3753.	6.7	60
134	Preparation and HREM Characterization of a Protonated Form of a Layered Perovskite Tantalate from an Aurivillius Phase Bi2SrTa2O9via Acid Treatment. Inorganic Chemistry, 2001, 40, 5768-5771.	4.0	58
135	Preparation of a Kaolinite–Nylon 6 Intercalation Compound. Bulletin of the Chemical Society of Japan, 2001, 74, 1153-1158.	3.2	38
136	Preparation and pyrolysis of a blended precursor possessing Ti?N and Al?N bonds. Applied Organometallic Chemistry, 2001, 15, 710-716.	3.5	11
137	Title is missing!. Journal of Sol-Gel Science and Technology, 2001, 22, 133-138.	2.4	15
138	Synthesis of a Soluble Precursor Possessing an Nb-N Backbone Structure and Its Pyrolytic Conversion into Niobium-Based Ceramics. Bulletin of the Chemical Society of Japan, 2000, 73, 1299-1305.	3.2	5
139	Conversion of an Aurivillius Phase Bi2SrNaNb3O12 into Its Protonated Form via Treatment with Various Mineral Acids. Materials Research Society Symposia Proceedings, 2000, 658, 6241.	0.1	0
140	Formation of Novel Ordered Mesoporous Silicas with Square Channels and Their Direct Observation by Transmission Electron Microscopy. Angewandte Chemie - International Edition, 2000, 39, 3855-3859.	13.8	93
141	Preparation of Titania from Tetrakis(diethylamino)titanium via Hydrolysis. Journal of Sol-Gel Science and Technology, 2000, 19, 365-369.	2.4	3
142	Immobilization of Photosynthetic Pigments into Silica-Surfactant Nanocomposite Films. Journal of Sol-Gel Science and Technology, 2000, 19, 543-547.	2.4	14
143	Characterization of Silanol Groups in Protonated Magadiite by 1H and 2H Solid-State Nuclear Magnetic Resonance. Clays and Clay Minerals, 2000, 48, 632-637.	1.3	15
144	Modification of the Interlayer Surface of Kaolinite with Methoxy Groups. Langmuir, 2000, 16, 5506-5508.	3.5	104

#	Article	IF	CITATIONS
145	Pyrolysis of Poly(isopropyliminoalane) to Aluminum Nitride. Journal of the American Ceramic Society, 2000, 83, 2436-2440.	3.8	21
146	Synthesis and Characterization of Lamellar and Hexagonal Mesostructured Aluminophosphates Using Alkyltrimethylammonium Cations as Structure-Directing Agents. Chemistry of Materials, 1999, 11, 508-518.	6.7	111
147	Thermal transformation of a kaolinite–poly(acrylamide) intercalation compound. Journal of Materials Chemistry, 1999, 9, 3081-3085.	6.7	13
148	An acentric arrangement of p-nitroaniline molecules between the layers of kaoliniteâ€. Chemical Communications, 1999, , 2253-2254.	4.1	23
149	Synthesis of reduced layered titanoniobates KTi1â^'xNb1+xO5. Materials Letters, 1999, 39, 184-187.	2.6	7
150	Intercalation of alkylamines and water into kaolinite with methanol kaolinite as an intermediate. Applied Clay Science, 1999, 15, 241-252.	5.2	123
151	Organic Modification of FSM-Type Mesoporous Silicas Derived from Kanemite by Silylation. Langmuir, 1999, 15, 2794-2798.	3.5	84
152	New Conversion Reaction of an Aurivillius Phase into the Protonated Form of the Layered Perovskite by the Selective Leaching of the Bismuth Oxide Sheet. Journal of the American Chemical Society, 1999, 121, 11601-11602.	13.7	59
153	Direct Intercalation of Poly(vinylpyrrolidone) into Kaolinite by a Refined Guest Displacement Method. Chemistry of Materials, 1999, 11, 3-6.	6.7	110
154	Synthesis and Structural Study of the KNb4O6-Type Compound Journal of the Ceramic Society of Japan, 1999, 107, 318-321.	1.3	3
155	Esterification of the Silanol Groups in the Mesoporous Silica Derived from Kanemite. Journal of Porous Materials, 1998, 5, 127-132.	2.6	66
156	Pyrolytic conversion of precursors prepared in Ti(NMe2)4-diamine systems. Applied Organometallic Chemistry, 1998, 12, 787-792.	3.5	6
157	The relationship between structural variation and electrical properties in the spinel MgV2â^'xTixO4 (0) Tj ETQq1	l 0,78431 4.0	4 rgBT /Overl
158	Synthesis of mesoporous aluminophosphates using surfactants with long alkyl chain lengths and triisopropylbenzene as a solubilizing agent. Chemical Communications, 1998, , 559-560.	4.1	79
159	Synthesis of Oriented Inorganicâ`'Organic Nanocomposite Films from Alkyltrialkoxysilaneâ`'Tetraalkoxysilane Mixtures. Journal of the American Chemical Society, 1998, 120, 4528-4529.	13.7	80
160	Pyrolytic Conversion of the Cage-Type Precursors into AIN. Key Engineering Materials, 1998, 159-160, 77-82.	0.4	6
161	A kaolinite-NMF-methanol intercalation compound as a versatile intermediate for further intercalation reaction of kaolinite. Journal of Materials Research, 1998, 13, 930-934.	2.6	86
162	Synthesis of Na1-xLnxNbO3 (Ln=La, Nd, Sm, Gd) and their Structures and Electrical Properties. Materials Research Society Symposia Proceedings, 1998, 547, 267.	0.1	0

#	Article	IF	CITATIONS
163	Preparation of a Hybrid Preceramic Precursor for Al-Si-C-N Nanocomposites via a Molecular Building Block Approach. Chemistry Letters, 1998, 27, 191-192.	1.3	10
164	Pyrolytic Preparation of Gallium Nitride From [Ga(NEt2)3]2 and its Ammonolysis Compound. Materials Research Society Symposia Proceedings, 1997, 468, 93.	0.1	1
165	Preparation of Soluble AlN Precursors in a LiAlH4-CH3NH2·HCl-(CH3)2NH·HCl System. Chemistry Letters, 1997, 26, 1227-1228.	1.3	2
166	Synthesis of a Hexagonal Mesostructured Aluminophosphate. Chemistry Letters, 1997, 26, 983-984.	1.3	38
167	Preparation of Stoichiometric and Nonstoichiometric Magnesium Titanate Spinels. Journal of the Ceramic Society of Japan, 1997, 105, 101-105.	1.3	7
168	The Rare-Earth Dependence on the Solid Solution Formation and Electrical Properties of KCa _{2-<i>x</i>} R _{<i>x</i>} Nb _{3(R=Nd, Sm, Gd and Ce). Journal of the Ceramic Society of Japan, 1997, 105, 284-287.}	b &g t;0<	; s ub>108
169	29Si NMR study on co-hydrolysis processes in Si(OEt)4–RSi(OEt)3 –EtOH–water–HCl systems (R=Me,) Tj	ETQq1 1	0,784314 rg 48
170	Polymerization reactions in an Al(OBu s)3â~'(COOH)2 system. Journal of Sol-Gel Science and Technology, 1997, 8, 95-99.	2.4	0
171	Preparation of AlN from poly(ethyliminoalane)via pyrolysis. Journal of Materials Chemistry, 1996, 6, 1055.	6.7	27
172	Preparation and electrical properties of KCa2–xLaxNb3O10. Journal of Materials Chemistry, 1996, 6, 69-72.	6.7	12
173	Characterization of Aluminum Nitride from a Precursor Poly (isopropyliminoalane). Journal of the Ceramic Society of Japan, 1996, 104, 143-145.	1.3	16
174	SYNTHESIS OF A LAMELLAR MESOSTRUCTURED ALUMINOPHOSPHATE. Phosphorus Research Bulletin, 1996, 6, 205-208.	0.6	10
175	Formation of Methoxy-Modified Interlayer Surface via the Reaction between Methanol and Layered Perovskite HLaNb2O7.cntdot.xH2O. Inorganic Chemistry, 1995, 34, 5065-5069.	4.0	61
176	29Si-NMR study of hydrolysis and initial polycondensation processes of organoalkoxysilanes. II. Methyltriethoxysilane. Journal of Non-Crystalline Solids, 1994, 167, 21-28.	3.1	94
177	Formation of Intercalation Compounds of a Layered Sodium Octosilicate withn-Alkyltrimethylammonium lons and the Application to Organic Derivatization. Bulletin of the Chemical Society of Japan, 1994, 67, 3352-3355.	3.2	59
178	Effects of the Structure of Silica-Alumina Gel on the Hydrothermal Synthesis of Kaolinite. Clays and Clay Minerals, 1994, 42, 288-297.	1.3	29
179	Synthesis of La _{1-<i>x</i>} M _{<i>x</i>} TiO ₃ (M = Na, K; 0 ≤i>x≤0.4) and the electrical properties. Phase Transitions, 1993, 41, 137-141.	1.3	5
180	Evidence for the formation of Bi2(Sr2-xCax)CuOywith the 2201 structure. Phase Transitions, 1993, 41, 205-208.	1.3	0

#	Article	IF	CITATIONS
181	Silicon-29 NMR Study on the Initial Stage of the Co-Hydrolysis of Tetraethoxysilane and Methyltriethoxysilane. Materials Research Society Symposia Proceedings, 1992, 271, 231.	0.1	10
182	Preparation of Aluminum Nitride from Poly (isopropyliminoalane). Journal of the Ceramic Society of Japan, 1992, 100, 101-103.	1.3	17
183	Clay-Organic Nano-Composite. Journal of the Ceramic Society of Japan, 1992, 100, 413-416.	1.3	30
184	29Si-NMR study of hydrolysis and initial polycondensation processes of organoalkoxysilanes. I. Dimethyldiethoxysilane. Journal of Non-Crystalline Solids, 1992, 139, 25-34.	3.1	82
185	Photoreduction Of Methylviologen In The Interlayers Of Some Layered Titanates And Niobates. Materials Research Society Symposia Proceedings, 1991, 233, 169.	0.1	7
186	Preparation of intercalation compounds between V2O5 gel and bipyridyl metal complexes. Materials Research Bulletin, 1991, 26, 309-315.	5.2	20
187	Polymerization of Hydrolysis Products of Methyltriethoxysilane in Aqueous Solutions. Journal of the Ceramic Society of Japan, 1990, 98, 647-652.	1.3	11
188	Preparation of a Kaolinite-Polyacrylamide Intercalation Compound. Clays and Clay Minerals, 1990, 38, 137-143.	1.3	67
189	Kaolinite-Pyridine Intercalation Compound derived from Hydrated Kaolinite. Clays and Clay Minerals, 1989, 37, 143-150.	1.3	32
190	Carbothermal reduction process of precursors derived from alkoxides for synthesis of boron-doped SiC powder. Journal of Materials Science Letters, 1989, 8, 944-946.	0.5	10
191	The carbothermal reduction process of a montmorillonite-polyacrylonitrile intercalation compound. Journal of Materials Science, 1988, 23, 3572-3577.	3.7	25
192	Preparation of Silicon Carbide and Aluminum Silicon Carbide from a Montmorillonite-Polyacrylonitrile Intercalation Compound by Carbothermal Reduction. Journal of the American Ceramic Society, 1988, 71, C-325-C-327.	3.8	9
193	AlN formation from a hydrotalcite-polyacrylonitrile intercalation compound by carbothermal reduction. Ceramics International, 1988, 14, 163-167.	4.8	41
194	Preparation of Titanium Nitride (TiN1-x-yCxOy) from Ti(OPri)4-Triethanolamine Condensation Product by Pyrolysis. Materials Research Society Symposia Proceedings, 1988, 121, 575.	0.1	6
195	Evidence for the Formation of Interlayer Polyacrylonitrile in Kaolinite. Clays and Clay Minerals, 1988, 36, 343-348.	1.3	89
196	The Preparation of a Magadiite-Polyacrylonitrile Intercalation Compound and Its Conversion to Silicon Carbide. Journal of the Ceramic Association Japan, 1987, 95, 127-133.	0.2	2
197	Si ₃ N ₄ Formation in the Carbothermal Reduction Process of a Magadiite-Polyacrylonitrile Intercalation Compound. Journal of the Ceramic Association Japan, 1987, 95, 134-139.	0.2	4
198	Carbide Formation from a Montmorillonite-Polyacrylonitrile Intercalation Compound by Carbothermal Reduction. Journal of the Ceramic Association Japan, 1986, 94, 48-53.	0.2	4

#	Article	IF	CITATIONS
199	Synthesis of Kaolinite-Lactam Intercalation Compounds. Bulletin of the Chemical Society of Japan, 1986, 59, 2607-2610.	3.2	14
200	Synthesis of ?-Sialon from a Montmorillonite-Polyacrylonitrile Intercalation Compound by Carbothermal Reduction. Journal of the American Ceramic Society, 1984, 67, c247-c248.	3.8	49
201	Improvement of Channel Mobility in 4H-SiC C-Face MOSFETs by H ₂ Rich Wet Re-Oxidation. Materials Science Forum, 0, 778-780, 975-978.	0.3	15
202	Interlayer Surface Modification of Layered Perovskite HLaNb ₂ O ₇ · <i>x</i> H ₂ O with Diol Compounds Possessing Ethylene Oxide Chains. Key Engineering Materials, 0, 616, 82-86.	0.4	2
203	Janus Nanosheets Derived from K ₄ Nb ₆ O ₁₇ ·3H ₂ O <i>via</i> Regioselective Interlayer Surface Modification. , 0, , .		0