
Laurent Lefort

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8604800/publications.pdf Version: 2024-02-01

LAUDENT LEEODT

#	Article	IF	CITATIONS
1	Enantioselective Synthesis of a 2,3-Benzodiazepine Intermediate of BET Inhibitor BAY 1238097 via Catalytic Asymmetric Hydrogenation. Organic Process Research and Development, 2020, 24, 255-260.	2.7	14
2	Mechanistic Complexity of Asymmetric Transfer Hydrogenation with Simple Mn–Diamine Catalysts. Organometallics, 2019, 38, 3187-3196.	2.3	38
3	Phosphine-free cobalt catalyst precursors for the selective hydrogenation of olefins. Catalysis Science and Technology, 2019, 9, 61-64.	4.1	8
4	Asymmetric Synthesis of a Key Intermediate for Tofacitinib via a Dynamic Kinetic Resolution-Reductive Amination Protocol. Organic Process Research and Development, 2018, 22, 1817-1822.	2.7	21
5	Ligand libraries for high throughput screening of homogeneous catalysts. Chemical Society Reviews, 2018, 47, 5038-5060.	38.1	63
6	Long-chain α–ω diols from renewable fatty acids via tandem olefin metathesis–ester hydrogenation. Green Chemistry, 2017, 19, 1678-1684.	9.0	5
7	Nonâ€Pincerâ€Type Manganese Complexes as Efficient Catalysts for the Hydrogenation of Esters. Angewandte Chemie - International Edition, 2017, 56, 7531-7534.	13.8	169
8	Nonâ€Pincerâ€Type Manganese Complexes as Efficient Catalysts for the Hydrogenation of Esters. Angewandte Chemie, 2017, 129, 7639-7642.	2.0	40
9	Innenrücktitelbild: Nonâ€Pincerâ€Type Manganese Complexes as Efficient Catalysts for the Hydrogenation of Esters (Angew. Chem. 26/2017). Angewandte Chemie, 2017, 129, 7787-7787.	2.0	0
10	Selective Hydrogenation of α,βâ€Unsaturated Aldehydes and Ketones by Airâ€Stable Ruthenium NNS Complexes. Chemistry - A European Journal, 2017, 23, 8473-8481.	3.3	40
11	A Formal Synthesis of (â^')-Perhydrohistrionicotoxin Using a Cross Metathesis–Hydrogenation Approach. Journal of Organic Chemistry, 2017, 82, 8725-8732.	3.2	5
12	Supported nickel–rhenium catalysts for selective hydrogenation of methyl esters to alcohols. Chemical Communications, 2017, 53, 9761-9764.	4.1	42
13	Asymmetric Hydrogenation of 3â€Substituted Pyridinium Salts. Chemistry - A European Journal, 2016, 22, 9528-9532.	3.3	29
14	Expanding the Catalytic Scope of (Cyclopentadienone)iron Complexes to the Hydrogenation of Activated Esters to Alcohols. ChemCatChem, 2016, 8, 3431-3435.	3.7	27
15	A Mixed Ligand Approach for the Asymmetric Hydrogenation of 2â€6ubstituted Pyridinium Salts. Advanced Synthesis and Catalysis, 2016, 358, 2589-2593.	4.3	18
16	Asymmetric Transfer Hydrogenation of Ketones with Modified Grubbs Metathesis Catalysts: On the Way to a Tandem Process. Advanced Synthesis and Catalysis, 2016, 358, 515-519.	4.3	8
17	Assisted Tandem Catalysis: Metathesis Followed by Asymmetric Hydrogenation from a Single Ruthenium Source. Advanced Synthesis and Catalysis, 2015, 357, 2223-2228.	4.3	16
18	Synthesis of (<i>R</i>)â€BINOLâ€Derived (Cyclopentadienone)iron Complexes and Their Application in the Catalytic Asymmetric Hydrogenation of Ketones. European Journal of Organic Chemistry, 2015, 2015, 5526-5536.	2.4	45

LAURENT LEFORT

#	Article	IF	CITATIONS
19	Bis-N-heterocyclic Carbene Aminopincer Ligands Enable High Activity in Ru-Catalyzed Ester Hydrogenation. Journal of the American Chemical Society, 2015, 137, 7620-7623.	13.7	90
20	Chiral (Cyclopentadienone)iron Complexes for the Catalytic Asymmetric Hydrogenation of Ketones. European Journal of Organic Chemistry, 2015, 2015, 1887-1893.	2.4	56
21	Lutidine-Derived Ru-CNC Hydrogenation Pincer Catalysts with Versatile Coordination Properties. ACS Catalysis, 2014, 4, 2667-2671.	11.2	104
22	Catalytic Asymmetric Reduction of a 3,4-Dihydroisoquinoline for the Large-Scale Production of Almorexant: Hydrogenation or Transfer Hydrogenation?. Organic Process Research and Development, 2013, 17, 1531-1539.	2.7	26
23	Rutheniumâ€Catalysed Hydrogenation of Aromatic Ketones using Monodentate Phosphoramidite Ligands. Advanced Synthesis and Catalysis, 2010, 352, 2621-2628.	4.3	9
24	Efficient preparation of an N-aryl β-amino acid via asymmetric hydrogenation and direct asymmetric reductive amination en route to Ezetimibe. Tetrahedron: Asymmetry, 2010, 21, 1709-1714.	1.8	37
25	Asymmetric Hydrogenation of Quinolines Catalyzed by Iridium Complexes of Monodentate BINOLâ€Derived Phosphoramidites. Advanced Synthesis and Catalysis, 2008, 350, 1081-1089.	4.3	140
26	Asymmetric Hydrogenation Using Monodentate Phosphoramidite Ligands. Accounts of Chemical Research, 2007, 40, 1267-1277.	15.6	369
27	A Mixed-Ligand Approach Enables the Asymmetric Hydrogenation of an α-Isopropylcinnamic Acid en Route to the Renin Inhibitor Aliskiren. Organic Process Research and Development, 2007, 11, 585-591.	2.7	79
28	Enantioselective synthesis of \hat{l}^22 -amino acids using rhodium-catalyzed hydrogenation. Organic and Biomolecular Chemistry, 2007, 5, 267-275.	2.8	60
29	High Enantioselectivity Is Induced by a Single Monodentate Phosphoramidite Ligand in Iridium-Catalyzed Asymmetric Hydrogenation. Angewandte Chemie - International Edition, 2007, 46, 1497-1500.	13.8	80
30	High throughput screening of Monophos instant ligand library leads to a ton-scale asymmetric hydrogenation process. Topics in Catalysis, 2006, 40, 185-191.	2.8	25
31	Screening of a Supramolecular Catalyst Library in the Search for Selective Catalysts for the Asymmetric Hydrogenation of a Difficult Enamide Substrate. Angewandte Chemie - International Edition, 2006, 45, 1223-1227.	13.8	184
32	Rh-Catalyzed Asymmetric Hydrogenation of Prochiral Olefins with a Dynamic Library of Chiral TROPOS Phosphorus Ligands. Chemistry - A European Journal, 2005, 11, 6701-6717.	3.3	86
33	Instant Ligand Libraries. Parallel Synthesis of Monodentate Phosphoramidites and in Situ Screening in Asymmetric Hydrogenation. Organic Letters, 2004, 6, 1733-1735.	4.6	101
34	Highly Enantioselective Conjugate Additions of Potassium Organotrifluoroborates to Enones by Use of Monodentate Phosphoramidite Ligands. Journal of Organic Chemistry, 2004, 69, 8045-8052.	3.2	115