Giovanni Tonon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8604727/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chromatin Velocity reveals epigenetic dynamics by single-cell profiling of heterochromatin and euchromatin. Nature Biotechnology, 2022, 40, 235-244.	9.4	72
2	Genomic Instability and Replicative Stress in Multiple Myeloma: The Final Curtain?. Cancers, 2022, 14, 25.	1.7	5
3	Longitudinal analysis of T cell receptor repertoires reveals shared patterns of antigen-specific response to SARS-CoV-2 infection. JCI Insight, 2022, 7, .	2.3	15
4	Chest CT in the emergency department for suspected COVID-19 pneumonia. Radiologia Medica, 2021, 126, 498-502.	4.7	32
5	The winding road toward the myeloma mouse. Blood, 2021, 137, 7-8.	0.6	1
6	JunB is a key regulator of multiple myeloma bone marrow angiogenesis. Leukemia, 2021, 35, 3509-3525.	3.3	19
7	Deletion of a pseudogene within a fragile site triggers the oncogenic expression of the mitotic CCSER1 gene. Life Science Alliance, 2021, 4, e202101019.	1.3	2
8	Global transcriptomic changes occur in uterine fluid-derived extracellular vesicles during the endometrial window for embryo implantation. Human Reproduction, 2021, 36, 2249-2274.	0.4	37
9	Aging, inflammation and DNA damage in the somatic testicular niche with idiopathic germ cell aplasia. Nature Communications, 2021, 12, 5205.	5.8	25
10	The WNT receptor ROR2 drives the interaction of multiple myeloma cells with the microenvironment through AKT activation. Leukemia, 2020, 34, 257-270.	3.3	33
11	MSH6 gene pathogenic variant identified in familial pancreatic cancer in the absence of colon cancer. European Journal of Gastroenterology and Hepatology, 2020, 32, 345-349.	0.8	5
12	FAM46C and FNDC3A Are Multiple Myeloma Tumor Suppressors That Act in Concert to Impair Clearing of Protein Aggregates and Autophagy. Cancer Research, 2020, 80, 4693-4706.	0.4	20
13	WNT Signaling in Hematological Malignancies. Frontiers in Oncology, 2020, 10, 615190.	1.3	29
14	ATR addiction in multiple myeloma: synthetic lethal approaches exploiting established therapies. Haematologica, 2020, 105, 2440-2447.	1.7	12
15	β-arrestin1/YAP/mutant p53 complexes orchestrate the endothelin A receptor signaling in high-grade serous ovarian cancer. Nature Communications, 2019, 10, 3196.	5.8	40
16	How Cancer Exploits Ribosomal RNA Biogenesis: A Journey beyond the Boundaries of rRNA Transcription. Cells, 2019, 8, 1098.	1.8	26
17	Immune signature drives leukemia escape and relapse after hematopoietic cell transplantation. Nature Medicine, 2019, 25, 603-611.	15.2	253
18	Big Data in Medicine, the Present and Hopefully the Future. Frontiers in Medicine, 2019, 6, 263.	1.2	22

#	Article	IF	CITATIONS
19	ATR addiction in Multiple Myeloma: synthetic lethal approaches exploiting established therapies. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, e139.	0.2	0
20	Mapping the Evolution of the Mutational Landscape of Acute Myeloid Leukemia from Diagnosis to Post-Transplantation Relapse and Its Interplay with Immune Evasion Mechanisms. Blood, 2019, 134, 511-511.	0.6	2
21	Highly similar genomic landscapes in monoclonal B-cell lymphocytosis and ultra-stable chronic lymphocytic leukemia with low frequency of driver mutations. Haematologica, 2018, 103, 865-873.	1.7	47
22	Early onset sporadic colorectal cancer: Worrisome trends and oncogenic features. Digestive and Liver Disease, 2018, 50, 521-532.	0.4	65
23	Modeling multiple myeloma-bone marrow interactions and response to drugs in a 3D surrogate microenvironment. Haematologica, 2018, 103, 707-716.	1.7	36
24	Association between rs6152 polymorphism in the androgen receptor gene and disease aggressiveness in a prospective cohort of prostate cancer patients undergoing radical prostatectomy. European Urology Supplements, 2018, 17, 167.	0.1	1
25	Microbiota-driven interleukin-17-producing cells and eosinophils synergize to accelerate multiple myeloma progression. Nature Communications, 2018, 9, 4832.	5.8	144
26	Tumor suppressor <scp>PNRC</scp> 1 blocks r <scp>RNA</scp> maturation by recruiting the decapping complex to the nucleolus. EMBO Journal, 2018, 37, .	3.5	28
27	Combining Whole Exome Sequencing and Rnaseq to Provide a Comprehensive Landscape of the Mechanisms of Post-Transplantation Leukemia Relapse. Blood, 2018, 132, 819-819.	0.6	0
28	UTX/KDM6A Loss Enhances the Malignant Phenotype of Multiple Myeloma and Sensitizes Cells to EZH2 inhibition. Cell Reports, 2017, 21, 628-640.	2.9	106
29	The AP-1 transcription factor JunB is essential for multiple myeloma cell proliferation and drug resistance in the bone marrow microenvironment. Leukemia, 2017, 31, 1570-1581.	3.3	60
30	Disentangling the microRNA regulatory <i>milieu</i> in multiple myeloma: integrative genomics analysis outlines mixed miRNA-TF circuits and pathway-derived networks modulated in t(4;14) patients. Oncotarget, 2016, 7, 2367-2378.	0.8	41
31	Insight On Colorectal Carcinoma Infiltration by Studying Perilesional Extracellular Matrix. Scientific Reports, 2016, 6, 22522.	1.6	73
32	HIF- $1\hat{l}\pm$ regulates the interaction of chronic lymphocytic leukemia cells with the tumor microenvironment. Blood, 2016, 127, 1987-1997.	0.6	52
33	Chromogranin A Is Preferentially Cleaved into Proangiogenic Peptides in the Bone Marrow of Multiple Myeloma Patients. Cancer Research, 2016, 76, 1781-1791.	0.4	24
34	Structural basis for PHD _V C5HCH _{NSD1} –C2HR _{Nizp1} interaction: implications for Sotos syndrome. Nucleic Acids Research, 2016, 44, 3448-3463.	6.5	12
35	Transcription factor TLX1 controls retinoic acid signaling to ensure spleen development. Journal of Clinical Investigation, 2016, 126, 2452-2464.	3.9	30
36	Profiling the Genomic Landscape at the Early Stages of CLL: Low Genomic Complexity and Paucity of Driver Mutations in MBL and Indolent CLL. Blood, 2016, 128, 3214-3214.	0.6	2

#	Article	IF	CITATIONS
37	Abstract 2912: The AP-1 transcription factor JunB promotes multiple myeloma cell proliferation, survival and drug resistance in the bone marrow microenvironment. , 2016, , .		0
38	The AP-1 Transcription Factor JunB Promotes Multiple Myeloma (MM) Cell Proliferation, Survival and Drug Resistance in the Bone Marrow Microenvironment. Clinical Lymphoma, Myeloma and Leukemia, 2015, 15, e215.	0.2	2
39	Th22 cells increase in poor prognosis multiple myeloma and promote tumor cell growth and survival. Oncolmmunology, 2015, 4, e1005460.	2.1	37
40	H3K4me3 demethylation by the histone demethylase KDM5C/JARID1C promotes DNA replication origin firing. Nucleic Acids Research, 2015, 43, 2560-2574.	6.5	58
41	Pathological glycogenesis through glycogen synthase 1 and suppression of excessive AMP kinase activity in myeloid leukemia cells. Leukemia, 2015, 29, 1555-1563.	3.3	48
42	p63 sustains self-renewal of mammary cancer stem cells through regulation of Sonic Hedgehog signaling. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3499-3504.	3.3	141
43	Synthetic Lethal Approaches Exploiting DNA Damage in Aggressive Myeloma. Cancer Discovery, 2015, 5, 972-987.	7.7	97
44	Modifications of the mouse bone marrow microenvironment favor angiogenesis and correlate with disease progression from asymptomatic to symptomatic multiple myeloma. Oncolmmunology, 2015, 4, e1008850.	2.1	27
45	Cheâ€lâ€induced inhibition of <scp>mTOR</scp> pathway enables stressâ€induced autophagy. EMBO Journal, 2015, 34, 1214-1230.	3.5	66
46	The ribonuclease DIS3 promotes let-7 miRNA maturation by degrading the pluripotency factor LIN28B mRNA. Nucleic Acids Research, 2015, 43, 5182-5193.	6.5	31
47	Histone demethylase JARID1C inactivation triggers genomic instability in sporadic renal cancer. Journal of Clinical Investigation, 2015, 125, 4625-4637.	3.9	62
48	Molecular spectrum of <i>BRAF, NRAS</i> and <i>KRAS</i> gene mutations in plasma cell dyscrasias: implication for MEK-ERK pathway activation. Oncotarget, 2015, 6, 24205-24217.	0.8	65
49	A compendium of <i>DIS3</i> mutations and associated transcriptional signatures in plasma cell dyscrasias. Oncotarget, 2015, 6, 26129-26141.	0.8	40
50	Abstract B09: Exploiting oncogene-induced DNA replicative stress as synthetic lethal approach to target myeloma , 2015, , .		0
51	Abstract B32: Loss of the histone demethylase UTX alters the gene expression prolife and contributes to the malignant phenotype of multiple myeloma cells , 2015, , .		0
52	Abstract PR04: Exploiting oncogene-induced DNA replicative stress as synthetic lethal approach to target myeloma , 2015, , .		0
53	Targeting Replicative Stress to Treat Hematological Disorders. Blood, 2015, 126, 2419-2419.	0.6	0
54	Awakening the Hippo co-activator YAP1, a mercurial cancer gene, in hematologic cancers. Molecular and Cellular Oncology, 2014, 1, e970055.	0.3	9

#	Article	IF	CITATIONS
55	Genomics in Multiple Myeloma. , 2014, , 301-319.		2
56	Rescue of Hippo coactivator YAP1 triggers DNA damage–induced apoptosis in hematological cancers. Nature Medicine, 2014, 20, 599-606.	15.2	250
57	Genetic distance, transportation costs, and trade1. Journal of Economic Geography, 2014, 14, 179-198.	1.6	68
58	Contrasting roles of histone 3 lysine 27 demethylases in acute lymphoblastic leukaemia. Nature, 2014, 514, 513-517.	13.7	340
59	Targeting Mcl-1 for multiple myeloma (MM) therapy: Drug-induced generation of Mcl-1 fragment Mcl-1128–350 triggers MM cell death via c-Jun upregulation. Cancer Letters, 2014, 343, 286-294.	3.2	29
60	Bone Marrow Endosteal Mesenchymal Progenitors Depend on HIF Factors for Maintenance and Regulation of Hematopoiesis. Stem Cell Reports, 2014, 2, 794-809.	2.3	23
61	Loss of the Histone Demethylase UTX Contributes to Multiple Myeloma and Sensitizes Cells to EZH2 Inhibitors. Blood, 2014, 124, 611-611.	0.6	7
62	Abstract 3383: JunB/AP-1 controls MM cell proliferation, survival and drug resistance in the bone marrow microenvironment. , 2014, , .		0
63	Serine/Threonine Kinase STK4 Is a Novel Target in Myeloma. Blood, 2014, 124, 645-645.	0.6	23
64	The AP-1 Transcription Factor JunB Promotes Multiple Myeloma (MM) Cell Proliferation, Survival and Drug Resistance in the Bone Marrow Microenvironment. Blood, 2014, 124, 3446-3446.	0.6	2
65	An Oncogene-Regulated Epigenetic Switch in T Cell Acute Lymphoblastic Leukemia. Blood, 2014, 124, 56-56.	0.6	0
66	Synthetic Lethal Approaches to Exploit Replicative Stress in Aggressive Myeloma. Blood, 2014, 124, 173-173.	0.6	0
67	Angiogenesis Associated with Alterations of the Bone Marrow Microenvironment Predicts Multiple Myeloma Progression to Symptomatic Disease in Mice and Humans. Blood, 2014, 124, 5678-5678.	0.6	Ο
68	Lentiviral vector–based insertional mutagenesis identifies genes associated with liver cancer. Nature Methods, 2013, 10, 155-161.	9.0	86
69	Iron increases the susceptibility of multiple myeloma cells to bortezomib. Haematologica, 2013, 98, 971-979.	1.7	40
70	The Oncogene MYC Triggers Replicative Stress and DNA Damage In Multiple Myeloma. Blood, 2013, 122, 3114-3114.	0.6	0
71	Genetic and Epigenetic Mechanisms in Multiple Myeloma. , 2012, , 58-72.		0
72	Abstract 104: New liver cancer genes identified by lentiviral vector-based insertional mutagenesis in mice are associated to differential survival in hepatocellular carcinoma patients. , 2012, , .		0

#	Article	IF	CITATIONS
73	The Role of the ABL1/YAP1/P73 Axis in Prevention of DNA Damage-Mediated Apoptosis in Multiple Myeloma. Blood, 2012, 120, 725-725.	0.6	0
74	Pancreatic cancers require autophagy for tumor growth. Genes and Development, 2011, 25, 717-729.	2.7	1,224
75	The selective adhesion molecule inhibitor Natalizumab decreases multiple myeloma cell growth in the bone marrow microenvironment: therapeutic implications. British Journal of Haematology, 2011, 155, 438-448.	1.2	65
76	Telomere dysfunction induces metabolic and mitochondrial compromise. Nature, 2011, 470, 359-365.	13.7	1,093
77	Disentangling the Myeloma Web. Clinical Cancer Research, 2011, 17, 7210-7212.	3.2	3
78	Abstract 4982: Identification of new human liver cancer genes by a novel lentiviral vector-based insertional mutagenesis approach in three mouse models of hepatocarcinogenesis. , 2011, , .		0
79	Correction of βâ€thalassemia major by gene transfer in haematopoietic progenitors of pediatric patients. EMBO Molecular Medicine, 2010, 2, 315-328.	3.3	82
80	Targeting Angiogenesis via a c-Myc/Hypoxia-Inducible Factor-1α–Dependent Pathway in Multiple Myeloma. Cancer Research, 2009, 69, 5082-5090.	0.4	89
81	Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer. Nature Genetics, 2009, 41, 521-523.	9.4	734
82	Targeting PKC: a novel role for beta-catenin in ER stress and apoptotic signaling. Blood, 2009, 113, 1513-1521.	0.6	65
83	CS1 promotes multiple myeloma cell adhesion, clonogenic growth, and tumorigenicity via c-maf–mediated interactions with bone marrow stromal cells. Blood, 2009, 113, 4309-4318.	0.6	75
84	Somatic mutations affect key pathways in lung adenocarcinoma. Nature, 2008, 455, 1069-1075.	13.7	2,694
85	p53 and Pten control neural and glioma stem/progenitor cell renewal and differentiation. Nature, 2008, 455, 1129-1133.	13.7	658
86	From oncogene to network addiction: the new frontier of cancer genomics and therapeutics. Future Oncology, 2008, 4, 569-577.	1.1	27
87	Moving Toward Individualized Cancer Therapies. Clinical Cancer Research, 2008, 14, 4682-4684.	3.2	2
88	Pten and p53 Converge on c-Myc to Control Differentiation, Self-renewal, and Transformation of Normal and Neoplastic Stem Cells in Glioblastoma. Cold Spring Harbor Symposia on Quantitative Biology, 2008, 73, 427-437.	2.0	109
89	Lymphoma/Myeloma. , 2008, , 351-359.		1
90	Targeting PKC: A Novel Role for Beta-catenin in ER Stress and Apoptotic Signaling. Blood, 2008, 112, 2763-2763.	0.6	0

#	Article	IF	CITATIONS
91	C-Myc- Dependent Stabilization of Hif-1alpha in MM: Therapeutic Implications. Blood, 2008, 112, 2750-2750.	0.6	4
92	CS1 Promotes Multiple Myeloma Cell Adhesion, Clonogenic Growth, and Tumorigenicity Via C-Maf-Mediated Interactions with Bone Marrow Stromal Cells (BMSCs). Blood, 2008, 112, 840-840.	0.6	1
93	Common and Distinct Genomic Events in Sporadic Colorectal Cancer and Diverse Cancer Types. Cancer Research, 2007, 67, 10736-10743.	0.4	64
94	Up-Regulation of c-Jun Inhibits Proliferation and Induces Apoptosis via Caspase-Triggered c-Abl Cleavage in Human Multiple Myeloma. Cancer Research, 2007, 67, 1680-1688.	0.4	56
95	Molecular Pathogenesis of Multiple Myeloma. Hematology/Oncology Clinics of North America, 2007, 21, 985-1006.	0.9	24
96	Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets. Nature Reviews Cancer, 2007, 7, 585-598.	12.8	817
97	The Differentiation and Stress Response Factor XBP-1 Drives Multiple Myeloma Pathogenesis. Cancer Cell, 2007, 11, 349-360.	7.7	362
98	Novel Therapeutic Targets in Multiple Myeloma. Translational Medicine Series, 2007, , 75-94.	0.0	0
99	CS1, a New Surface Target on Multiple Myeloma (MM) Cells, Protects Myeloma Cells from Apoptosis Via Regulation of ERK1/2, AKT and STAT3 Signaling Cascades Blood, 2007, 110, 109-109.	0.6	2
100	Targeting Proteinkinase C Alters ER-Stress and b-Catenin Signaling in Multiple Myeloma: Therapeutic Implications Blood, 2007, 110, 258-258.	0.6	0
101	The small-molecule VEGF receptor inhibitor pazopanib (GW786034B) targets both tumor and endothelial cells in multiple myeloma. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 19478-19483.	3.3	189
102	K-ras activation generates an inflammatory response in lung tumors. Oncogene, 2006, 25, 2105-2112.	2.6	249
103	High-resolution genomic profiles define distinct clinico-pathogenetic subgroups of multiple myeloma patients. Cancer Cell, 2006, 9, 313-325.	7.7	404
104	Integrating data on DNA copy number with gene expression levels and drug sensitivities in the NCI-60 cell line panel. Molecular Cancer Therapeutics, 2006, 5, 853-867.	1.9	157
105	The MEK1/2 Inhibitor AZD6244 (ARRY-142886) Downregulates Constitutive and Adhesion-Induced c-MAF Oncogene Expression and Its Downstream Targets in Human Multiple Myeloma Blood, 2006, 108, 3463-3463.	0.6	2
106	The Small-Molecule VEGF-Receptor Inhibitor Pazopanib (GW786034B) Targets Both Tumor and Endothelial Cells in Multiple Myeloma Blood, 2006, 108, 5003-5003.	0.6	0
107	Upregulation of c-Jun Induces Cell Death Via Caspase-Triggered c-Abl Cleavage in Human Multiple Myeloma Blood, 2006, 108, 3415-3415.	0.6	0
108	Karyotypic "state" as a potential determinant for anticancer drug discovery. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2964-2969.	3.3	25

#	Article	IF	CITATIONS
109	High-resolution genomic profiles of human lung cancer. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9625-9630.	3.3	360
110	Common and Contrasting Genomic Profiles among the Major Human Lung Cancer Subtypes. Cold Spring Harbor Symposia on Quantitative Biology, 2005, 70, 11-24.	2.0	18
111	Up-Regulation of c-Jun contributes to the Induction of Apoptosis by Adaphostin in Human Multiple Myeloma Cells Blood, 2005, 106, 1585-1585.	0.6	0
112	Multiple reciprocal translocations in salivary gland mucoepidermoid carcinomas. Cancer Genetics and Cytogenetics, 2004, 152, 15-22.	1.0	30
113	A Study of MECT1-MAML2 in Mucoepidermoid Carcinoma and Warthin's Tumor of Salivary Glands. Journal of Molecular Diagnostics, 2004, 6, 205-210.	1.2	122
114	Comprehensive Genome-Wide Profile of Regional Gains and Losses in Multiple Myeloma Using Array-CGH: The 1q21 Amplification and Potential Role of the BCL-9 Gene in Multiple Myeloma Pathogenesis Blood, 2004, 104, 785-785.	0.6	4
115	t(11;19)(q21;p13) translocation in mucoepidermoid carcinoma creates a novel fusion product that disrupts a Notch signaling pathway. Nature Genetics, 2003, 33, 208-213.	9.4	523
116	Karyotypic complexity of the NCI-60 drug-screening panel. Cancer Research, 2003, 63, 8634-47.	0.4	227
117	Does the P2X1del variant lacking 17 amino acids in its extracellular domain represent a relevant functional ion channel in platelets?. Blood, 2002, 99, 2275-2277.	0.6	7
118	Stable Karyotypes in Epithelial Cancer Cell Lines Despite High Rates of Ongoing Structural and Numerical Chromosomal Instability. Neoplasia, 2002, 4, 19-31.	2.3	98
119	Weak platelet agonists and U46619 induce apoptosis-like events in platelets, in the absence of phosphatidylserine exposure. Thrombosis Research, 2002, 107, 345-350.	0.8	27
120	Novel structurally altered P2X1 receptor is preferentially activated by adenosine diphosphate in platelets and megakaryocytic cells. Blood, 2001, 98, 100-107.	0.6	28
121	Spectral karyotyping combined with locus-specific FISH simultaneously defines genes and chromosomes involved in chromosomal translocations. Genes Chromosomes and Cancer, 2000, 27, 418-423.	1.5	12
122	Spectral karyotyping combined with locus-specific FISH simultaneously defines genes and chromosomes involved in chromosomal translocations. Genes Chromosomes and Cancer, 2000, 27, 418-23.	1.5	4
123	Plasma homocysteine levels in 10 patients with polycythemia. Haematologica, 1997, 82, 343-4.	1.7	5