Laurence Hecquet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8603836/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enzyme-catalyzed synthesis of carbohydrates: synthetic potential of transketolase. Tetrahedron Letters, 1991, 32, 5085-5088.	1.4	81
2	Preparative scale enzymatic synthesis of d-sedoheptulose-7-phosphate from β-hydroxypyruvate and d-ribose-5-phosphate. Journal of Molecular Catalysis B: Enzymatic, 2009, 57, 6-9.	1.8	47
3	A pHâ€Based Highâ€Throughput Assay for Transketolase: Fingerprinting of Substrate Tolerance and Quantitative Kinetics. ChemBioChem, 2012, 13, 2290-2300.	2.6	42
4	Donor Promiscuity of a Thermostable Transketolase by Directed Evolution: Efficient Complementation of 1â€Deoxyâ€ <scp>d</scp> â€xyluloseâ€5â€phosphate Synthase Activity. Angewandte Chemie - International Edition, 2017, 56, 5358-5362.	13.8	37
5	Enzymes as reagents in organic chemistry: transketolase-catalysed synthesis of d-[1,2-13C2]xylulose. Carbohydrate Research, 1990, 206, 79-85.	2.3	36
6	Thermostable Transketolase from <i>Geobacillus stearothermophilus:</i> Characterization and Catalytic Properties. Advanced Synthesis and Catalysis, 2013, 355, 116-128.	4.3	35
7	A thermostable transketolase evolved for aliphatic aldehyde acceptors. Chemical Communications, 2015, 51, 480-483.	4.1	35
8	Efficient Immobilization of Yeast Transketolase on Layered Double Hydroxides and Application for Ketose Synthesis. Advanced Synthesis and Catalysis, 2011, 353, 1497-1509.	4.3	32
9	New Assays for Transketolase. Bioscience, Biotechnology and Biochemistry, 1993, 57, 2174-2176.	1.3	31
10	Engineering a thermostable transketolase for arylated substrates. Green Chemistry, 2017, 19, 481-489.	9.0	27
11	Engineering a Thermostable Transketolase for Unnatural Conversion of (2 <i>S</i>)â€Hydroxyaldehydes. Advanced Synthesis and Catalysis, 2015, 357, 1715-1720.	4.3	26
12	One-pot, two-step cascade synthesis of naturally rare <scp>l</scp> -erythro (3S,4S) ketoses by coupling a thermostable transaminase and transketolase. Green Chemistry, 2017, 19, 425-435.	9.0	26
13	Secondâ€Generation Engineering of a Thermostable Transketolase (TK _{Gst}) for Aliphatic Aldehyde Acceptors with Either Improved or Reversed Stereoselectivity. ChemBioChem, 2017, 18, 455-459.	2.6	19
14	Chiral Polyol Synthesis Catalyzed by a Thermostable Transketolase Immobilized on Layered Double Hydroxides in Ionic liquids. ChemCatChem, 2015, 7, 3163-3170.	3.7	18
15	Instant Oneâ€Pot Preparation of Functional Layered Double Hydroxides (LDHs) via a Continuous Hydrothermal Approach. ChemNanoMat, 2017, 3, 614-619.	2.8	15
16	Evolved Thermostable Transketolase for Stereoselective Two-Carbon Elongation of Non-Phosphorylated Aldoses to Naturally Rare Ketoses. ACS Catalysis, 2019, 9, 4754-4763.	11.2	14
17	Transketolase–Aldolase Symbiosis for the Stereoselective Preparation of Aldoses and Ketoses of Biological Interest. Advanced Synthesis and Catalysis, 2017, 359, 2061-2065.	4.3	13
18	Insights into the Thiamine Diphosphate Enzyme Activation Mechanism: Computational Model for Transketolase Using a Quantum Mechanical/Molecular Mechanical Method. Biochemistry, 2016, 55, 2144-2152	2.5	12

#	Article	IF	CITATIONS
19	Enzymatic Synthesis of Aliphatic Acyloins Catalyzed by Thermostable Transketolase. ChemCatChem, 2020, 12, 5772-5779.	3.7	10
20	Oneâ€Pot Cascade Synthesis of (3S)â€Hydroxyketones Catalyzed by TransketolaseviaHydroxypyruvate Generatedinâ€Situfromdâ€&erine bydâ€Amino Acid Oxidase. Advanced Synthesis and Catalysis, 2019, 361, 255	0 ^{4.3}	7
21	Convergent inâ€situ Generation of Both Transketolase Substrates via Transaminase and Aldolase Reactions for Sequential Oneâ€Pot, Threeâ€5tep Cascade Synthesis of Ketoses. ChemCatChem, 2020, 12, 812-817.	3.7	7
22	Donorâ€Promiskuitäeiner thermostabilen Transketolase durch gelenkte Evolution – effektive Komplementierung der 1â€Desoxyâ€ <scp>d</scp> ―xyluloseâ€5â€phosphatâ€Synthaseâ€Aktivitä Angewandt 2017, 129, 5442-5447.	e20biemie,	6
23	QM/MM Study of Human Transketolase: Thiamine Diphosphate Activation Mechanism and Complete Catalytic Cycle. Journal of Chemical Information and Modeling, 2021, 61, 3502-3515.	5.4	4
24	<scp>d</scp> -Serine as a Key Building Block: Enzymatic Process Development and Smart Applications within the Cascade Enzymatic Concept. Organic Process Research and Development, 2020, 24, 769-775.	2.7	3
25	Transketolase Catalyzed Synthesis of <i>N</i> â€Aryl Hydroxamic Acids. Advanced Synthesis and Catalysis, 2022, 364, 612-621.	4.3	3
26	Highâ€Throughput Solidâ€Phase Assay for Substrate Profiling and Directed Evolution of Transketolase. ChemBioChem, 2021, 22, 2814-2820.	2.6	2
27	Cleavage of Aliphatic α-Hydroxy Ketones by Evolved Transketolase from <i>Geobacillus stearothermophilus</i> . ACS Catalysis, 2022, 12, 3566-3576.	11.2	1