Liang Zuo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8603748/publications.pdf Version: 2024-02-01

	87843	175177
4,315	38	52
citations	h-index	g-index
211	211	2220
211	211	2229
docs citations	times ranked	citing authors
	4,315 citations 211 docs citations	4,315 citations h-index 211 docs citations 211 times ranked

#	Article	IF	CITATIONS
1	Strong cube recrystallization texture in silicon steel by twin-roll casting process. Acta Materialia, 2014, 76, 106-117.	3.8	145
2	Giant magnetocaloric effect in melt-spun Ni-Mn-Ga ribbons with magneto-multistructural transformation. Applied Physics Letters, 2014, 104, 044101.	1.5	96
3	Twin-controlled growth of eutectic Si in unmodified and Sr-modified Al–12.7%Si alloys investigated by SEM/EBSD. Acta Materialia, 2015, 97, 338-347.	3.8	94
4	Crystal structure determination of incommensurate modulated martensite in Ni–Mn–In Heusler alloys. Acta Materialia, 2015, 88, 375-388.	3.8	83
5	Phase transition and magnetocaloric properties of Mn ₅₀ Ni _{42â^'<i>x</i>} Co _{<i>x</i>} Sn ₈ (0 ≤i>x ≤0) melt-spun ribbons. IUCrJ, 2018, 5, 54-6	6. ^{1.0}	78
6	Achieving a broad refrigeration temperature region through the combination of successive caloric effects in a multiferroic Ni50Mn35In15 alloy. Acta Materialia, 2020, 192, 52-59.	3.8	75
7	Giant elastocaloric effect and exceptional mechanical properties in an all-d-metal Ni–Mn–Ti alloy: Experimental and ab-initio studies. Materials and Design, 2019, 184, 108180.	3.3	74
8	Twin relationships of 5M modulated martensite in Ni–Mn–Ga alloy. Acta Materialia, 2011, 59, 3390-3397.	3.8	72
9	Giant low-field magnetocaloric effect in Si alloyed Ni-Co-Mn-In alloys. Scripta Materialia, 2019, 159, 113-118.	2.6	72
10	Enhanced Catalytic Activity of Pt Nanomaterials: From Monodisperse Nanoparticles to Self-Organized Nanoparticle-Linked Nanowires. Journal of Physical Chemistry C, 2010, 114, 6909-6913.	1.5	70
11	Large elastocaloric effect driven by stress-induced two-step structural transformation in a directionally solidified Ni55Mn18Ga27 alloy. Scripta Materialia, 2019, 163, 116-120.	2.6	64
12	Determination of the orientation relationship between austenite and incommensurate 7M modulated martensite in Ni–Mn–Ga alloys. Acta Materialia, 2011, 59, 2762-2772.	3.8	61
13	Large elastocaloric effect in a polycrystalline Ni45.7Co4.2Mn37.3Sb12.8 alloy with low transformation strain. Scripta Materialia, 2019, 162, 486-491.	2.6	61
14	Tuning the Reversible Magnetocaloric Effect in Ni–Mn–Inâ€Based Alloys through Co and Cu Coâ€Đoping. Advanced Electronic Materials, 2019, 5, 1800845.	2.6	60
15	Development of {2 1 0}ã€^0 0 1〉 recrystallization texture in Fe–6.5 wt.% Si thin sheets. Scripta Materialia, 2011, 65, 292-295.	2.6	58
16	Experiment and theoretical prediction of martensitic transformation crystallography in a Ni–Mn–Ga ferromagnetic shape memory alloy. Acta Materialia, 2007, 55, 4731-4740.	3.8	57
17	A general method to determine twinning elements. Journal of Applied Crystallography, 2010, 43, 1426-1430.	1.9	57
18	Micromechanical behavior of multilayered Ti/Nb composites processed by accumulative roll bonding: An in-situ synchrotron X-ray diffraction investigation. Acta Materialia, 2021, 205, 116546.	3.8	56

#	Article	IF	CITATIONS
19	Microstructural and crystallographic characteristics of interpenetrating and non-interpenetrating multiply twinned nanostructure in a Ni–Mn–Ga ferromagnetic shape memory alloy. Acta Materialia, 2011, 59, 7070-7081.	3.8	54
20	Crystallographic, magnetic, and electronic structures of ferromagnetic shape memory alloys Ni2XGa (X=Mn,Fe,Co) from first-principles calculations. Journal of Applied Physics, 2011, 109, 014908.	1.1	54
21	Effects of Intercritical Annealing Temperature on Mechanical Properties of Fe-7.9Mn-0.14Si-0.05Al-0.07C Steel. Materials, 2014, 7, 7891-7906.	1.3	54
22	Martensitic and magnetic transformation in Ni–Mn–Ga–Co ferromagnetic shape memory alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 473, 213-218.	2.6	53
23	Combined caloric effects in a multiferroic Ni–Mn–Ga alloy with broad refrigeration temperature region. APL Materials, 2017, 5, .	2.2	53
24	Low-temperature plasma nitriding of titanium layer on Ti/Al clad sheet. Materials & Design, 2013, 47, 408-415.	5.1	52
25	Correlation between microstructure and martensitic transformation, mechanical properties and elastocaloric effect in Ni–Mn-based alloys. Intermetallics, 2019, 113, 106579.	1.8	52
26	A Facile and Template-Free Method to Prepare Mesoporous Gold Sponge and Its Pore Size Control. Journal of Physical Chemistry C, 2008, 112, 10352-10358.	1.5	50
27	New approach to twin interfaces of modulated martensite. Journal of Applied Crystallography, 2010, 43, 617-622.	1.9	48
28	The effects of alloying element Co on Ni–Mn–Ga ferromagnetic shape memory alloys from first-principles calculations. Applied Physics Letters, 2011, 98, .	1.5	47
29	Giant low-field magnetocaloric effect in a textured Ni45.3Co5.1Mn36.1In13.5 alloy. Scripta Materialia, 2018, 151, 61-65.	2.6	47
30	Strengthening mechanism of load sharing of particulate reinforcements in a metal matrix composite. Journal of Materials Science, 2007, 42, 4215-4226.	1.7	46
31	Determination of microstructure and twinning relationship between martensitic variants in 53â€at.%Ni–25â€at.%Mn–22â€at.%Ga ferromagnetic shape memory alloy. Journal of Applied Crysta 2006, 39, 723-727.	allog æp hy,	45
32	Microstructure and magnetocaloric effect of melt-spun Ni52Mn26Ga22 ribbon. Applied Physics Letters, 2012, 100, .	1.5	45
33	Composition-dependent ground state of martensite in Ni–Mn–Ga alloys. Acta Materialia, 2013, 61, 3858-3865.	3.8	45
34	Crystal structure and phase transformation in Ni53Mn25Ga22 shape memory alloy from 20Kto473K. Applied Physics Letters, 2005, 87, 111906.	1.5	44
35	Effects of a High Magnetic Field on Microstructure and Texture Evolution in a Cold-rolled Interstitial-Free (IF) Steel Sheet during Annealing. Advanced Engineering Materials, 2003, 5, 579-583.	1.6	43
36	Indirect two-trace method to determine a faceted low-energy interface between two crystallographically correlated crystals. Journal of Applied Crystallography, 2007, 40, 436-440.	1.9	42

#	Article	IF	CITATIONS
37	In situ high-energy X-ray studies of magnetic-field-induced phase transition in a ferromagnetic shape memory Ni–Co–Mn–In alloy. Acta Materialia, 2008, 56, 913-923.	3.8	42
38	Microstructural and textural evolutions in multilayered Ti/Cu composites processed by accumulative roll bonding. Journal of Materials Science and Technology, 2019, 35, 1165-1174.	5.6	42
39	Crystallographic insights into the intermartensitic transformation in Ni–Mn–Ga alloys. Acta Materialia, 2014, 74, 9-17.	3.8	41
40	Evidence for a monoclinic incommensurate superstructure in modulated martensite. Acta Materialia, 2012, 60, 6982-6990.	3.8	38
41	A multielement alloying strategy to improve elastocaloric and mechanical properties in Ni–Mn-based alloys via copper and boron. Scripta Materialia, 2020, 185, 94-99.	2.6	36
42	Improvement of microstructure and fatigue performance of wire-arc additive manufactured 4043 aluminum alloy assisted by interlayer friction stir processing. Journal of Materials Science and Technology, 2023, 133, 183-194.	5.6	36
43	Large room temperature adiabatic temperature variation in a Ni40Co8Mn42Sn10 polycrystalline alloy. Intermetallics, 2018, 100, 57-62.	1.8	35
44	Direct evidence on magnetic-field-induced phase transition in a NiCoMnIn ferromagnetic shape memory alloy under a stress field. Applied Physics Letters, 2007, 90, 101917.	1.5	34
45	Microstructural features and orientation correlations of non-modulated martensite in Ni–Mn–Ga epitaxial thin films. Acta Materialia, 2013, 61, 6809-6820.	3.8	34
46	Heat-treatment induced defect formation in α-Al matrix in Sr-modified eutectic Al–Si alloy. Journal of Alloys and Compounds, 2018, 730, 208-218.	2.8	34
47	Abnormal e/a-dependence of TM and large inverse magnetocaloric effect in Ni49â^'xCuxMn39Sb12 alloys. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2011, 176, 621-625.	1.7	33
48	Tracing Memory in Polycrystalline Ferromagnetic Shape-Memory Alloys. Advanced Materials, 2006, 18, 2392-2396.	11.1	32
49	Development of high density magnetic recording media for hard disk drives: materials science issues and challenges. International Materials Reviews, 2009, 54, 157-179.	9.4	32
50	First-principles investigation of B2 partial disordered structure, martensitic transformation, elastic and magnetic properties of all-d-metal Ni-Mn-Ti Heusler alloys. Journal of Materials Science and Technology, 2021, 68, 103-111.	5.6	31
51	Large magnetoresistance in a directionally solidified Ni44.5Co5.1Mn37.1In13.3 magnetic shape memory alloy. Journal of Magnetism and Magnetic Materials, 2018, 452, 249-252.	1.0	30
52	Giant low-field actuated caloric effects in a textured Ni43Mn47Sn10 alloy. Scripta Materialia, 2021, 201, 113947.	2.6	30
53	Influence of austenite ferromagnetism on the elastocaloric effect in a Ni44.9Co4.9Mn36.9In13.3 metamagnetic shape memory alloy. Applied Physics Letters, 2019, 115, .	1.5	28
54	Enhanced cyclability of elastocaloric effect in a directionally solidified Ni55Mn18Ga26Ti1 alloy with low hysteresis. Scripta Materialia, 2020, 189, 78-83.	2.6	28

#	Article	IF	CITATIONS
55	Ab-initio revelation on the origins of Ti substitution for Ga, Mn and Ni on ferromagnetism, phase stability and elastic properties in Ni2MnGa. Journal of Alloys and Compounds, 2020, 821, 153481.	2.8	27
56	Oscillation of the magnetic moment in modulated martensites in Ni2MnGa studied by <i>ab initio</i> calculations. Applied Physics Letters, 2012, 100, .	1.5	26
57	Excellent mechanical properties and large magnetocaloric effect of spark plasma sintered Ni-Mn-In-Co alloy. Journal of Materials Science and Technology, 2021, 74, 46-51.	5.6	26
58	Variant organization and mechanical detwinning of modulated martensite in Ni–Mn–In metamagnetic shape-memory alloys. Acta Materialia, 2016, 111, 75-84.	3.8	25
59	Giant elastocaloric effect in a Mn-rich Ni44Mn46Sn10 directionally solidified alloy. Applied Physics Letters, 2020, 116, .	1.5	25
60	Impact of B alloying on ductility and phase transition in the Ni–Mn-based magnetic shape memory alloys: Insights from first-principles calculation. Journal of Materials Science and Technology, 2021, 74, 27-34.	5.6	25
61	Correlative effect of critical parameters for η recrystallization texture development in rolled Fe81Ga19 sheet: Modeling and experiment. Acta Materialia, 2019, 167, 167-180.	3.8	23
62	Large refrigeration capacity in a Ni48Co1Mn37In14 polycrystalline alloy with low thermal hysteresis. Intermetallics, 2020, 125, 106888.	1.8	23
63	Crystal structures and textures of hot forged Ni48Mn30Ga22alloy investigated by neutron diffraction technique. Materials Science and Technology, 2005, 21, 1412-1416.	0.8	22
64	New Sequences of Phase Transition in Ni-Mn-Ga Ferromagnetic Shape Memory Nanoparticles. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2008, 39, 466-469.	1.1	22
65	Capping Groups Induced Size and Shape Evolution of Magnetite Particles Under Hydrothermal Condition and their Magnetic Properties. Journal of the American Ceramic Society, 2009, 92, 631-635.	1.9	22
66	Complete martensitic transformation sequence and magnetic properties of non-stoichiometric Ni2Mn1.2Ga0.8 alloy by first-principles calculations. Journal of Magnetism and Magnetic Materials, 2019, 473, 360-364.	1.0	22
67	Large magnetocaloric effect and excellent mechanical properties near room temperature in Ni-Co-Mn-Ti non-textured polycrystalline alloys. Applied Physics Letters, 2021, 119, .	1.5	22
68	Low Temperature Deformation Detwinning—A Reverse Mode of Twinning. Advanced Engineering Materials, 2010, 12, 906-911.	1.6	21
69	Over 2% magnetic-field-induced strain in a polycrystalline Ni50Mn28.5Ga21.5 alloy prepared by directional solidification. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 780, 139170.	2.6	21
70	Probing martensitic transformation, kinetics, elastic and magnetic properties of Ni2-Mn1.5In0.5Co alloys. Journal of Materials Science and Technology, 2020, 44, 31-41.	5.6	21
71	First-principles investigations of crystallographic, magnetic, and electronic structures in Ni2XIn (X = Mn, Fe, and Co). Journal of Applied Physics, 2012, 112, 114901.	1.1	20
72	Crystallographic Characterization on Polycrystalline Ni-Mn-Ga Alloys with Strong Preferred Orientation. Materials, 2017, 10, 463.	1.3	20

#	Article	IF	CITATIONS
73	Ab initio-based investigation of phase transition path and magnetism of Ni–Mn–In alloys with excess Ni or Mn. Acta Materialia, 2020, 195, 109-122.	3.8	20
74	Plastic deformation of Ni–Mn–Ga 7M modulated martensite by twinning & detwinning and intermartensitic transformation. International Journal of Plasticity, 2018, 100, 1-13.	4.1	19
75	Crystallographic insights into Ni–Co–Mn–In metamagnetic shape memory alloys. Journal of Applied Crystallography, 2016, 49, 1585-1592.	1.9	18
76	Thermal and magnetic field-induced martensitic transformation in Ni ₅₀ Mn _{25â^'<i>x</i>} Ga ₂₅ Cu _{<i>x</i>} (0  ⩽â€ melt-spun ribbons. Journal Physics D: Applied Physics, 2016, 49, 025002.	‰â £‰ ≺i>	>x< /is â€9
77	Sharp secondary recrystallization and large magnetostriction in Fe81Ga19 sheet induced by composite nanometer-sized inhibitors. Journal of Magnetism and Magnetic Materials, 2019, 478, 109-115.	1.0	18
78	Revealing essence of magnetostructural coupling of Ni-Co-Mn-Ti alloys by first-principles calculations and experimental verification. Rare Metals, 2022, 41, 1933-1947.	3.6	18
79	Giant Elastocaloric Effect in Ni-Mn-Ga-Based Alloys Boosted by a Large Lattice Volume Change upon the Martensitic Transformation. ACS Applied Materials & Interfaces, 2022, 14, 1505-1518.	4.0	18
80	Grain-to-Grain Stress Interactions in an Electrodeposited Iron Coating. Advanced Materials, 2005, 17, 1221-1226.	11.1	17
81	The effects of thermal processing in a magnetic field on grain boundary characters of ferrite in a medium carbon steel. Journal of Materials Science, 2005, 40, 903-908.	1.7	17
82	Effects of high magnetic field strength and direction on pearlite formation in Fe–0.12%C steel. Journal of Materials Science, 2008, 43, 6105-6108.	1.7	17
83	Study of the Portevin-Le Chatelier (PLC) Characteristics of a 5083 Aluminum Alloy Sheet in Two Heat Treatment States. Materials, 2018, 11, 1533.	1.3	17
84	Significant high-frequency electromagnetic wave absorption performance of Ni2+xMn1â^'xGa alloys. Journal of Materials Science, 2018, 53, 11779-11790.	1.7	17
85	Crossing twin of Ni–Mn–Ga 7M martensite induced by thermo-mechanical treatment. Acta Materialia, 2020, 185, 28-37.	3.8	17
86	Highly sensitive elastocaloric response in a directionally solidified Ni50Mn33In15.5Cu1.5 alloy with strong <001>A preferred orientation. Intermetallics, 2022, 140, 107379.	1.8	17
87	Computer simulation on the tendency of intergranular fracture in textured polycrystalline materials. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 2002, 82, 2499-2510.	0.7	16
88	Composition-dependent structural and magnetic properties of Ni–Mn–Ga alloys studied by ab initio calculations. Journal of Materials Science, 2015, 50, 3825-3834.	1.7	16
89	Secondary recrystallization and magnetostriction in binary Fe81Ga19 thin sheets. Journal of Applied Physics, 2016, 119, .	1.1	16
90	Effects of Co and Si co-doping on magnetostructural transformation and magnetocaloric effect in Ni-Mn-Sn based alloys. Journal of Alloys and Compounds, 2022, 892, 162190.	2.8	16

#	Article	IF	CITATIONS
91	Crystallographic insights into diamond-shaped 7M martensite in Ni–Mn–Ga ferromagnetic shape-memory alloys. IUCrJ, 2019, 6, 909-920.	1.0	16
92	Experimental evidence of stress-field-induced selection of variants in Ni-Mn-Ga ferromagnetic shape-memory alloys. Physical Review B, 2007, 75, .	1.1	15
93	Effect of a High Magnetic Field on Carbon Diffusion in γ-Iron. Materials Transactions, 2011, 52, 139-141.	0.4	15
94	Insight into variant selection of seven-layer modulated martensite in Ni–Mn–Ga thin films grown on MgO(0 0 1) substrate. Acta Materialia, 2015, 93, 205-217.	3.8	15
95	Sharp Goss texture and magnetostriction in binary Fe81Ga19 sheets. Journal of Magnetism and Magnetic Materials, 2016, 417, 321-326.	1.0	15
96	Deformation of Ni–Mn-Ga 7M modulated martensite through detwinning/twinning and forward/reverse intermartensitic transformation studied by in-situ neutron diffraction and interrupted in-situ EBSD. Acta Materialia, 2019, 174, 319-331.	3.8	15
97	A method to identify dislocations in a known crystal structure by transmission electron microscopy. Journal of Applied Crystallography, 2011, 44, 1164-1168.	1.9	14
98	Plastic Deformation in an Amorphous Ni-P Coating. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 1610-1620.	1.1	14
99	Large low-field magnetocaloric effect in a directionally solidified Ni 50 Mn 18 Cu 7 Cu 25 alloy. Intermetallics, 2017, 88, 31-35.	1.8	14
100	Large low-field magnetocaloric effect in directionally solidified Ni 55 Mn 18+x Ga 27â^'x (x = 0, 1, 2) alloys. Journal of Magnetism and Magnetic Materials, 2018, 445, 71-76.	1.0	14
101	Large elastocaloric effect in a Heusler-type Co50V35Ga14Ni1 polycrystalline alloy. Applied Physics Letters, 2021, 118, .	1.5	14
102	Texturation of Ni–Co–Mn–In Ribbons by Melt Spinning. Advanced Engineering Materials, 2010, 12, 1024-1028.	1.6	13
103	Determination of the orientation relationship between austenite and 5M modulated martensite in Ni–Mn–Ga alloys. Journal of Applied Crystallography, 2011, 44, 1222-1226.	1.9	13
104	Composition dependent phase stability of Ni–Mn–Ga alloys studied by ab initio calculations. Journal of Alloys and Compounds, 2014, 614, 126-130.	2.8	13
105	Crystal structure of modulated martensite and crystallographic correlations between martensite variants of Ni ₅₀ Mn ₃₈ Sn ₁₂ alloy. Journal of Applied Crystallography, 2016, 49, 1276-1283.	1.9	13
106	Crystallographic features of the martensitic transformation and their impact on variant organization in the intermetallic compound Ni ₅₀ Mn ₃₈ Sb ₁₂ studied by SEM/EBSD. IUCrJ, 2017, 4, 700-709.	1.0	13
107	Enhancing the elastocaloric effect in Ni–Mn–Ga alloys through the coupling of magnetic transition and two-step structural transformation. Applied Physics Letters, 2021, 118,	1.5	13
108	Giant magnetoresistance, magnetostrain and magnetocaloric effects in a Cu-doped<001>-textured Ni45Co5Mn36In13.2Cu0.8 polycrystalline alloy. Journal of Alloys and Compounds, 2021, 889, 161652.	2.8	13

#	Article	IF	CITATIONS
109	Effect of phosphorus modification on the microstructure and mechanical properties of DC cast Al-17.5Si-4.5Cu-1Zn-0.7Mg-0.5Ni alloy. Transactions of the Indian Institute of Metals, 2009, 62, 367-371.	0.7	12
110	Strain-induced dimensionality crossover and associated pseudoelasticity in the premartensitic phase of Ni2MnGa. Applied Physics Letters, 2010, 97, 171905.	1.5	12
111	Defect formation energy and magnetic properties of off-stoichiometric Ni-Mn-In alloys by first-principles calculations. Journal of Applied Physics, 2013, 113, .	1.1	12
112	Texture and Magnetic Properties of Rolled Fe-6.5Âwt.%Si Thin Sheets. Journal of Electronic Materials, 2014, 43, 121-125.	1.0	12
113	Crystal defect associated selection of phase transformation orientation relationships (ORs). Acta Materialia, 2018, 152, 315-326.	3.8	12
114	Large magnetocaloric effects in Co-doped Mn–Ni-Ge-Si alloys. Journal of Alloys and Compounds, 2020, 835, 155313.	2.8	12
115	Recrystallization texture development in rare-earth (RE)-doped non-oriented silicon steel. Journal of Iron and Steel Research International, 2020, 27, 1339-1346.	1.4	12
116	Effect of compressive load on the martensitic transformation from austenite to 5M martensite in a polycrystalline Ni–Mn-Ga alloy studied by in-situ neutron diffraction. Journal of Alloys and Compounds, 2016, 666, 1-9.	2.8	11
117	Correlation between crystallographic and microstructural features and low hysteresis behavior in Ni50.0Mn35.25In14.75 melt-spun ribbons. Journal of Alloys and Compounds, 2018, 767, 544-551.	2.8	11
118	Solidification microstructure and temperature field during direct chill casting of Al-16Si alloy. Transactions of the Indian Institute of Metals, 2009, 62, 347-351.	0.7	10
119	Firstâ€principles investigation of magnetic property and defect formation energy in Niâ€Mnâ€Ga ferromagnetic shape memory alloy. International Journal of Quantum Chemistry, 2013, 113, 847-851.	1.0	10
120	Development of Strong η Fiber Recrystallization Texture in Rolled Fe81Ga19 Thin Sheet. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 129-133.	1.1	10
121	Texture inheritance from austenite to 7 M martensite in Ni–Mn–Ga melt-spun ribbons. Results in Physics, 2016, 6, 428-433.	2.0	10
122	Development of Through-Thickness Cube Recrystallization Texture in Non-oriented Electrical Steels by Optimizing Nucleation Environment. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 2486-2494.	1.1	10
123	First-principles investigation of Mg substitution for Ga on martensitic transformation, magnetism and electronic structures in Ni2MnGa. Journal of Alloys and Compounds, 2020, 843, 156049.	2.8	10
124	Determination of strain path during martensitic transformation in materials with two possible transformation orientation relationships from variant self-organization. Acta Materialia, 2021, 202, 112-123.	3.8	10
125	Direct evidence of detwinning in polycrystalline Ni–Mn–Ga ferromagnetic shape memory alloys during deformation. Journal of Applied Physics, 2008, 104, 103519.	1.1	9
126	Development of strong {001}ã€^210〉 texture and magnetic properties in Fe–6.5wt.%Si thin sheet produce by rolling method. Journal of Applied Physics, 2011, 109, .	2ed	9

#	Article	IF	CITATIONS
127	<i>In-situ</i> neutron diffraction study of martensitic variant redistribution in polycrystalline Ni-Mn-Ga alloy under cyclic thermo-mechanical treatment. Applied Physics Letters, 2014, 105, .	1.5	9
128	Formation of Cube and Goss Texture After Primary Recrystallization in Electrical Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 134-138.	1.1	9
129	Heat Treatment of Centrifugally Cast High-Vanadium Alloy Steel for High-Pressure Grinding Roller. Acta Metallurgica Sinica (English Letters), 2014, 27, 430-435.	1.5	9
130	Texture and Microstructure for Magnetic Properties of Two-Stage Cold-Rolled Fe-6.5 Wt Pct Si Thin Sheets. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 5771-5776.	1.1	9
131	Largeâ€Scale Synthesis of Nanostructured Nitride Layer on Ti Plate Using Mechanical Shot Peening and Lowâ€Temperature Nitriding. Advanced Engineering Materials, 2017, 19, 1700157.	1.6	9
132	Understanding the magneto-structural coupling of Ni50Mn35.4In14.6 alloy from first-principles calculations. Journal of Magnetism and Magnetic Materials, 2019, 488, 165339.	1.0	9
133	Effect of Co doping on martensitic transformation and magnetic properties of Ni50Mn35.4In14.6 alloy by first-principles calculations. Journal of Alloys and Compounds, 2019, 804, 111-118.	2.8	9
134	Shear banding-induced ã€^c+a〉 slip enables unprecedented strength-ductility combination of laminated metallic composites. Journal of Materials Science and Technology, 2022, 110, 260-268.	5.6	9
135	Machine-learning-assisted discovery of empirical rule for inherent brittleness of full Heusler alloys. Journal of Materials Science and Technology, 2022, 131, 1-13.	5.6	9
136	Transformation process dependent magnetocaloric properties of annealed Ni 50 Mn 18 Cu 7 Ga 25 ribbons. Journal of Alloys and Compounds, 2017, 698, 731-738.	2.8	8
137	Magnetostructural transformation and magnetocaloric effect in Mn-Ni-Sn melt-spun ribbons. European Physical Journal Plus, 2017, 132, 1.	1.2	8
138	Large magnetic entropy change and magnetostrain in a directionally solidified Ni45.7Co4.2Mn37.3Sb12.8 alloy. Journal of Magnetism and Magnetic Materials, 2020, 500, 166379.	1.0	8
139	Electronic origin of the main-group element dependences of elastic moduli in the Ni2Mn-based magnetic shape memory alloys. Journal of Physics and Chemistry of Solids, 2021, 148, 109671.	1.9	8
140	A strategy of optimizing magnetism and hysteresis simultaneously in Ni–Mn-based metamagnetic shape memory alloys. Intermetallics, 2021, 130, 107063.	1.8	8
141	Revealing the role of site occupation in phase stability, magnetic and electronic properties of Ni-Mn-In alloys by ab initio approach. Journal of Materials Science and Technology, 2021, 83, 90-101.	5.6	8
142	Unconventional twin deformation of Ni-Mn-Ga 7M martensite under tension mediated by the collective lattice reorientation from a-c twin to b-c twin. Acta Materialia, 2022, 227, 117729.	3.8	8
143	Enhanced elastocaloric effect and refrigeration properties in a Si-doped Ni-Mn-In shape memory alloy. Journal of Materials Science and Technology, 2022, 117, 167-173.	5.6	8
144	Control of iron nitride formation by a high magnetic field. Journal of Materials Research, 2010, 25, 2082-2085.	1.2	7

#	Article	IF	CITATIONS
145	Phase stability, magnetic and elastic properties of Co2NiGa alloy: A first-principles calculation. Materials Today Communications, 2020, 22, 100810.	0.9	7
146	Simultaneously achieved good mechanical properties and large magnetocaloric effect in spark plasma sintered Ni-Mn-In alloys. Intermetallics, 2020, 124, 106868.	1.8	7
147	Complete Goss Secondary Recrystallization by Control of the Grain Size and Texture of Primary Recrystallization in Grain-Oriented Silicon Steel. Materials, 2021, 14, 5383.	1.3	7
148	Influence of a High Magnetic Field on the Solubility of Ferrite and the Amount of Pearlite. Steel Research International, 2011, 82, 836-838.	1.0	6
149	Crystal structure and crystallographic characteristics of martensite in Ni ₅₀ Mn ₃₈ Sb ₁₂ alloys. Journal of Applied Crystallography, 2016, 49, 513-519.	1.9	6
150	Characterization of the kinetic arrest of martensitic transformation in Ni 45 Co 5 Mn 36.8 In 13.2 melt-spun ribbons. Journal of Magnetism and Magnetic Materials, 2018, 446, 253-259.	1.0	6
151	Prediction of the Work-Hardening Exponent for 3104 Aluminum Sheets with Different Grain Sizes. Materials, 2019, 12, 2368.	1.3	6
152	Preparing high purity λ-Ti ₃ O ₅ and Li/λ-Ti ₃ O ₅ as high-performance electromagnetic wave absorbers. Journal of Materials Chemistry C, 0, , .	2.7	6
153	Secondary recrystallization behavior in magnetostrictive Fe-Ga thin sheets induced by nano-sized composite precipitates. AIP Advances, 2021, 11, .	0.6	6
154	Rapid Secondary Recrystallization of the Goss Texture in Fe81Ga19 Sheets Using Nanosized NbC Particles. Materials, 2021, 14, 3818.	1.3	6
155	Effects of Magnetic Field Annealing on Carburizing in Pure Iron. Steel Research International, 2011, 82, 1404-1407.	1.0	5
156	Recrystallization Texture Transition in Fe-2.1ÂWtÂPct Si Steel by Different Cold Rolling Reduction. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 5777-5782.	1.1	5
157	Secondary Recrystallization Goss Texture Development in a Binary Fe81Ga19 Sheet Induced by Inherent Grain Boundary Mobility. Metals, 2019, 9, 1254.	1.0	5
158	Investigation of martensitic transformation behavior in Ni-Mn-In Heusler alloy from a first-principles study. Journal of Materials Science and Technology, 2020, 58, 100-106.	5.6	5
159	Observation of magnetic domain evolution in constrained epitaxial Ni–Mn–Ga thin films on MgO(0 0 1) substrate. Journal of Materials Science and Technology, 2022, 102, 56-65.	5.6	5
160	Enhanced elastocaloric effect and specific adiabatic temperature variation in Ni-Mn-In-Si-Cu shape memory alloys. Journal of Alloys and Compounds, 2022, 920, 165955.	2.8	5
161	Effects of Post-Weld Heat Treatment on Microstructure and Mechanical Properties of Al-12.7Si-0.7Mg Alloy Welded Joints by GMAW. Acta Metallurgica Sinica (English Letters), 2014, 27, 245-252.	1.5	4
162	Crystallography of Martensitic Transformation in Epitaxial Ni ₅₀ Mn ₃₀ Ga ₂₀ Thin Film. Advanced Engineering Materials, 2018, 20, 1700171.	1.6	4

#	Article	IF	CITATIONS
163	Enhanced electromagnetic wave absorption properties of Ni2MnGa microparticles due to continuous dual-absorption peaks. Journal of Alloys and Compounds, 2020, 816, 152588.	2.8	4
164	Unraveling the abnormal dependence of phase stability on valence electron concentration in Ni–Mn-based metamagnetic shape memory alloys. Journal of Applied Physics, 2020, 128, .	1.1	4
165	Phase Formation and Microstructure Evolution of Al-5Si-0.8Mg Alloys with Different Mn Concentrations. Metals, 2021, 11, 308.	1.0	4
166	Large Low-Field Reversible Magnetocaloric Effect in Itinerant-Electron Hf1â^'xTaxFe2 Alloys. Materials, 2021, 14, 5233.	1.3	4
167	5M and 7M martensitic stability and associated physical properties in Ni50Mn35In15 alloy: first-principles calculations and experimental verification. Scripta Materialia, 2021, 204, 114140.	2.6	4
168	Phase transformation and magnetocaloric effect of Co-doped Mn–Ni–In melt-spun ribbons. Journal of Applied Physics, 2020, 128, 055110.	1.1	3
169	Formation of Phases and Microstructures in Al-8Si Alloys with Different Mg Content. Materials, 2021, 14, 762.	1.3	3
170	Thermal deformation behavior and microstructure evolution of modified IN617 alloy with different initial states. Journal of Iron and Steel Research International, 2021, 28, 1315-1328.	1.4	3
171	STUDY ON THE STRAIN HARDENING BEHAVIOR OF AlMgSiCu ALLOY SHEET FOR AUTOMOTIVE BODY. Jinshu Xuebao/Acta Metallurgica Sinica, 2010, 46, 613-617.	0.3	3
172	Simultaneously realized large low-temperature magnetocaloric effect and good mechanical properties in Ni36Co13Mn35Ti16 alloy. Journal of Applied Physics, 2022, 131, .	1.1	3
173	Effects of Magnetic Field Direction on \hat{I}^3 -fiber Texture Evolution in Cold-rolled Interstitial-free Steel Sheet during Annealing. Steel Research International, 2010, 81, 394-397.	1.0	2
174	Flexible Bamboo-Structured NiCoMnIn Microfibers with Magnetic-Field-Induced Reverse Martensite Transformation. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 3581-3584.	1.1	2
175	Goss Texture Evolution of Grain Oriented Silicon Steel by High-Energy X-ray Diffraction. Acta Metallurgica Sinica (English Letters), 2014, 27, 530-533.	1.5	2
176	Phosphor doping enhanced c-axis alignment and exchange decoupling of sputtered Co-Pt perpendicular thin films. Journal of Applied Physics, 2016, 119, 145304.	1.1	2
177	Influence of Ultrafineâ€Grained Layer on Gaseous Nitriding of Largeâ€Sized Titanium Plate. Advanced Engineering Materials, 2018, 20, 1700455.	1.6	2
178	Microstructure and properties of nitrided layer of titanium plate, produced by simultaneous laser quenching and liquid-nitrogen cryogenics. Science China Technological Sciences, 2018, 61, 1901-1906.	2.0	2
179	Oriented stability and its application in texture control. Philosophical Magazine, 2020, 100, 3092-3107.	0.7	2
180	Investigation on the preference of the martensitic structure in off-stoichiometric Ni-Mn-In alloys by first-principle calculations. Journal of Magnetism and Magnetic Materials, 2020, 514, 167194.	1.0	2

#	Article	IF	CITATIONS
181	The calculation of magnetic domain and magnetostriction in stressed grain-oriented silicon steel. Journal of Applied Physics, 2020, 127, .	1.1	2
182	Neighbor-Affected Orientation Rotation in the Grain Boundary Region. Materials, 2022, 15, 1059.	1.3	2
183	Microstructural Characteristics by EBSD and ECC in ECAE Processed Pure Cu Samples. Advanced Engineering Materials, 2003, 5, 593-597.	1.6	1
184	Some theoretical and computational aspects in grain boundaries and triple lines. Journal of Materials Science, 2005, 40, 841-845.	1.7	1
185	Effect of Cooling Rate on the Microstructure of Proeutectoid Ferrite under a High Magnetic Field in Feâ€0.52C. Steel Research International, 2010, 81, 1121-1124.	1.0	1
186	Application of EBSD to the Crystallographic Investigation on Ni-Mn-Ga Alloys. Materials Science Forum, 0, 706-709, 1879-1884.	0.3	1
187	Microstructural Feature and Magnetocaloric Effect of Mn50Ni40.5In9.5 Melt-Spun Ribbons. Crystals, 2017, 7, 289.	1.0	1
188	Secondary recrystallization induced by composite precipitates in magnetostrictive Fe-Ga alloy thin sheet. Journal of Physics: Conference Series, 2019, 1270, 012004.	0.3	1
189	Giant reversible magnetoresistance effect in a Ni46Co3Mn35Cu2In14 polycrystalline alloy. AIP Advances, 2021, 11, 015244.	0.6	1
190	Effects of Magnetic Field Direction on Texture Evolution in a Cold-Rolled IF Steel Sheet during High Magnetic Field Annealing. Ceramic Transactions, 0, , 435-440.	0.1	1
191	Characterization and Calculation of the Dynamic Recrystallization Texture in Fe-3.0 Wt.% Si Alloy. Materials, 2022, 15, 517.	1.3	1
192	Secondary Recrystallization Texture and Magnetostriction in Fe-Ga Alloy Ultra-Thin Sheet. IEEE Transactions on Magnetics, 2022, 58, 1-6.	1.2	1
193	Enhanced Magnetostrain in a <0 0 1>A-Textured Ni44.5Co4.9Mn37.5In13.1 Alloy through Superelastic Training. Materials, 2022, 15, 2072.	1.3	1
194	Magnetocaloric performance optimized by simple compression in directionally solidified Ni50Mn18Cu7Ga25 alloy. Journal of Alloys and Compounds, 2022, , 166001.	2.8	1
195	Unraveling the Phase Stability and Physical Property of Modulated Martensite in Ni2Mn1.5In0.5 Alloys by First-Principles Calculations. Materials, 2022, 15, 4032.	1.3	1
196	DETERMINATION OF CRYSTAL STRUCTURE AND CRYSTALLOGRAPHIC CHARACTERISTICS IN Ni - Mn - Ga FERROMAGNETIC SHAPE MEMORY ALLOYS. International Journal of Modern Physics B, 2009, 23, 1771-1776.	1.0	0
197	Effect of Magnetic Field Intensity on Microstructure and Orientation of Proeutectoid Ferrite in Feâ€0.76%C Alloy. Steel Research International, 2011, 82, 761-765.	1.0	0
198	Microstructural evolution associated with martensitic transformation in Ni-Mn-Ga alloy. IOP Conference Series: Materials Science and Engineering, 2015, 82, 012087.	0.3	0

#	Article	IF	CITATIONS
199	Magnetic-Field-Induced Isothermal Entropy Change Across the Magnetostructural Transition in Ni–Mn–Ga Melt-Spun Ribbons. IEEE Transactions on Magnetics, 2015, 51, 1-4.	1.2	0
200	Magnetic field-induced isothermal entropy change across the magnetostructural transition in Ni-Mn-Ga melt-spun ribbons. , 2015, , .		0
201	Crystallographic correlation between 5M and 7M martensite in an Ni–Mn–Ga alloy. Journal of Applied Crystallography, 2016, 49, 507-512.	1.9	0
202	Microstructural and Crystallographic Insights in a Martensite/Austenite Dual Phase Ni–Mn–Sb Alloy. Advanced Engineering Materials, 2018, 20, 1700221.	1.6	0
203	Microstructure evolution of Al-15% Si alloy during hot rolling. Philosophical Magazine Letters, 2018, 98, 456-463.	0.5	0
204	Investigation on vibrational, electronic excitation entropy and magnetic moment contributions to phase stability of off-stoichiometric Ni50MnxIn50-x alloys at finite temperatures by first-principle calculations. Journal Physics D: Applied Physics, 2020, 53, 405003.	1.3	0
205	Composition-Dependent of 6ÂM Martensite Structure and Magnetism in Cu-Alloyed Ni-Mn-In-Co by First-Principles Calculations. Acta Metallurgica Sinica (English Letters), 0, , 1.	1.5	0
206	Eutectoid Point Shift and Orientation Relationships between Ferrite and Cementite in Pearlite in a High Magnetic Field. Ceramic Transactions, 0, , 380-388.	0.1	0
207	Characteristics of Recrystallization Texture of Cold-Rolled IF Steel Sheet Annealed with a Magnetic Field in the Transverse Direction. Ceramic Transactions, 0, , 389-396.	0.1	0
208	Formation mechanism of nano-sized η and ω structures in β phase in ECP treated Cu-40Zn alloy. Materials and Design, 2022, 214, 110410.	3.3	0
209	Texture Evolution by Strain-Induced Boundary Migration during Hot Deformation of Fe-3.0 wt.% Si Alloy: Experiment and Modeling. Metals, 2022, 12, 360.	1.0	0

210 Crystallography and Microstructure of 7M Martensite in Ni-Mn-Ga Thin Films Epitaxially Grown on (1 1) Tj ETQq0 0 0 rgBT /Overlock 10

211	Occupation preferences and impacts of interstitial H, C, N, and O on magnetism and phase stability of Ni ₂ MnGa magnetic shape memory alloys by first-principles calculations. Journal of Applied Physics, 2022, 131, 205101.	1.1	0	
-----	--	-----	---	--