Andrea L Bredemeyer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8603402/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	CCL17 Aggravates Myocardial Injury by Suppressing Recruitment of Regulatory T Cells. Circulation, 2022, 145, 765-782.	1.6	42
2	Derivation of extra-embryonic and intra-embryonic macrophage lineages from human pluripotent stem cells. Development (Cambridge), 2022, 149, .	2.5	2
3	Single-cell transcriptomics reveals cell-type-specific diversification in human heart failure. , 2022, 1, 263-280.		124
4	SARS-CoV-2 Infects Human EngineeredÂHeart Tissues and Models COVID-19 Myocarditis. JACC Basic To Translational Science, 2021, 6, 331-345.	4.1	121
5	Resident cardiac macrophages mediate adaptive myocardial remodeling. Immunity, 2021, 54, 2072-2088.e7.	14.3	76
6	XLF and H2AX function in series to promote replication fork stability. Journal of Cell Biology, 2019, 218, 2113-2123.	5.2	15
7	Tissue Resident CCR2â~' and CCR2+ Cardiac Macrophages Differentially Orchestrate Monocyte Recruitment and Fate Specification Following Myocardial Injury. Circulation Research, 2019, 124, 263-278.	4.5	424
8	Ferroptotic cell death and TLR4/Trif signaling initiate neutrophil recruitment after heart transplantation. Journal of Clinical Investigation, 2019, 129, 2293-2304.	8.2	283
9	High-Throughput Screening Approach for Identifying Compounds That Inhibit Nonhomologous End Joining. SLAS Discovery, 2018, 23, 624-633.	2.7	5
10	MRI Is a DNA Damage Response Adaptor during Classical Non-homologous End Joining. Molecular Cell, 2018, 71, 332-342.e8.	9.7	76
11	The human heart contains distinct macrophage subsets with divergent origins and functions. Nature Medicine, 2018, 24, 1234-1245.	30.7	439
12	Deficiency of XLF and PAXX prevents DNA double-strand break repair by non-homologous end joining in lymphocytes. Cell Cycle, 2017, 16, 286-295.	2.6	36
13	Pediatric and adult dilated cardiomyopathy represent distinct pathological entities. JCI Insight, 2017, 2,	5.0	63
14	Modeling altered T-cell development with induced pluripotent stem cells from patients with RAG1-dependent immune deficiencies. Blood, 2016, 128, 783-793.	1.4	45
15	DNA Damage Responses: Beyond Double-Strand Break Repair. Current Biology, 2015, 25, R45-R46.	3.9	4
16	HCoDES Reveals Chromosomal DNA End Structures with Single-Nucleotide Resolution. Molecular Cell, 2014, 56, 808-818.	9.7	31
17	β-Catenin induces T-cell transformation by promoting genomic instability. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 391-396.	7.1	71
18	KAP-1 Promotes Resection of Broken DNA Ends Not Protected by γ-H2AX and 53BP1 in G ₁ -Phase Lymphocytes. Molecular and Cellular Biology, 2014, 34, 2811-2821.	2.3	20

2

#	Article	IF	CITATIONS
19	Functional Intersection of ATM and DNA-Dependent Protein Kinase Catalytic Subunit in Coding End Joining during V(D)J Recombination. Molecular and Cellular Biology, 2013, 33, 3568-3579.	2.3	39
20	Recurrent Hemizygous Deletions in Cancers May Optimize Proliferative Potential. Science, 2012, 337, 104-109.	12.6	172
21	Abstract IA8: Genetic approaches to cancer. , 2012, , .		0
22	Ataxia telangiectasia mutated (Atm) and DNA-PKcs kinases have overlapping activities during chromosomal signal joint formation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2022-2027.	7.1	58
23	Regulation of hematopoietic stem cell differentiation by a single ubiquitin ligase–substrate complex. Nature Immunology, 2010, 11, 207-215.	14.5	103
24	A Genome-wide Camptothecin Sensitivity Screen Identifies a Mammalian MMS22L-NFKBIL2 Complex Required for Genomic Stability. Molecular Cell, 2010, 40, 645-657.	9.7	99
25	Aberrantly resolved RAG-mediated DNA breaks in Atm-deficient lymphocytes target chromosomal breakpoints in <i>cis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18339-18344.	7.1	37
26	The SIOD disorder protein SMARCAL1 is an RPA-interacting protein involved in replication fork restart. Genes and Development, 2009, 23, 2415-2425.	5.9	183
27	Intrathymic proliferation wave essential for Vα14 ⁺ natural killer T cell development depends on c-Myc. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8641-8646.	7.1	100
28	MRN complex function in the repair of chromosomal Rag-mediated DNA double-strand breaks. Journal of Experimental Medicine, 2009, 206, 669-679.	8.5	81
29	Histone H2AX stabilizes broken DNA strands to suppress chromosome breaks and translocations during V(D)J recombination. Journal of Experimental Medicine, 2009, 206, 2625-2639.	8.5	55
30	Formation of Dynamic γ-H2AX Domains along Broken DNA Strands Is Distinctly Regulated by ATM and MDC1 and Dependent upon H2AX Densities in Chromatin. Molecular Cell, 2009, 34, 298-310.	9.7	169
31	MRN complex function in the repair of chromosomal Rag-mediated DNA double-strand breaks. Journal of Cell Biology, 2009, 184, i10-i10.	5.2	Ο
32	Histone H2AX stabilizes broken DNA strands to suppress chromosome breaks and translocations during V(D)J recombination. Journal of Cell Biology, 2009, 187, i8-i8.	5.2	0
33	Dynamic regulation of <i>câ€Myc</i> protoâ€oncogene expression during lymphocyte development revealed by a <i>GFPâ€câ€Myc</i> knockâ€in mouse. European Journal of Immunology, 2008, 38, 342-349.	2.9	118
34	DNA double-strand breaks activate a multi-functional genetic program in developing lymphocytes. Nature, 2008, 456, 819-823.	27.8	137
35	Aberrant V(D)J Recombination in Ataxia Telangiectasia Mutated-Deficient Lymphocytes Is Dependent on Nonhomologous DNA End Joining. Journal of Immunology, 2008, 181, 2620-2625.	0.8	42
36	ATM Prevents the Persistence and Propagation of Chromosome Breaks in Lymphocytes. Cell, 2007, 130, 63-75.	28.9	173

#	Article	IF	CITATIONS
37	SWI-SNF: promoter of accessibility. Nature Immunology, 2007, 8, 795-796.	14.5	0
38	ATM stabilizes DNA double-strand-break complexes during V(D)J recombination. Nature, 2006, 442, 466-470.	27.8	366
39	Proteasome Activator PA200 Is Required for Normal Spermatogenesis. Molecular and Cellular Biology, 2006, 26, 2999-3007.	2.3	133