Toru Shimada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8603250/publications.pdf Version: 2024-02-01

ΤΟΡΗ SHIMADA

#	Article	IF	CITATIONS
1	Special Issue "Hybrid Rocket (Volume II)― Aerospace, 2022, 9, 233.	2.2	3
2	Performance of Mixture-Ratio-Controlled Hybrid Rockets Under Uncertainties in Fuel Regression. Journal of Propulsion and Power, 2021, 37, 86-99.	2.2	4
3	Evolutions in Ballistic Data Reconstruction Techniques for Hybrid Rockets. , 2021, , .		0
4	Reconstructed Ballistic Data Versus Wax Regression-Rate Intrusive Measurement in a Hybrid Rocket. Journal of Spacecraft and Rockets, 2020, 57, 1295-1308.	1.9	12
5	Prediction of Space and Time Distribution of Wax-based Fuel Regression Rate in a Hybrid Rocket. , 2020, , .		2
6	Performance of Mixture-Ratio-Controlled Hybrid Rockets for Nominal Fuel Regression. Journal of Propulsion and Power, 2020, 36, 400-414.	2.2	9
7	Theoretical Investigation on Feedback Control of Hybrid Rocket Engines. Aerospace, 2019, 6, 65.	2.2	11
8	Hybrid Rocket Firing Experiments at Various Axial–Tangential Oxidizer-Flow-Rate Ratios. Journal of Propulsion and Power, 2019, 35, 94-108.	2.2	16
9	Elucidation of Influence of Fuels on Hybrid Rocket Using Visualization of Design-Space Structure. Computational Methods in Applied Sciences (Springer), 2019, , 473-488.	0.3	0
10	Genetic Algorithm Applied to Design Knowledge Discovery of Launch Vehicle Using Clustered Hybrid Rocket. Computational Methods in Applied Sciences (Springer), 2019, , 519-535.	0.3	0
11	A theoretical study on throttle ranges of O/F controllable hybrid rocket propulsion systems. Journal of Fluid Science and Technology, 2018, 13, JFST0031-JFST0031.	0.6	7
12	Numerical Parametric Analysis of Combustion Instability in Axial-Injected Hybrid Rocket Motors. Journal of Propulsion and Power, 2018, 34, 1542-1552.	2.2	11
13	Essentially Non-explosive Propulsion Paving a Way for Fail-Safe Space Transportation. Transactions of the Japan Society for Aeronautical and Space Sciences Aerospace Technology Japan, 2018, 16, 1-8.	0.2	6
14	Effective Operations of Extinction-Reignition with Simple Control of Oxidizer Flux on a Single-Stage Sounding Hybrid Rocket. , 2017, , .		1
15	Performance and Regression Rate Characteristics of 5-kN Swirling-Oxidizer-Flow-Type Hybrid Rocket Engine. Journal of Propulsion and Power, 2017, 33, 891-901.	2.2	23
16	Simple control of oxidizer flux for efficient extinction–reignition on a single-stage hybrid rocket. Aerospace Science and Technology, 2017, 71, 109-118.	4.8	3
17	Design Methodology of a Hybrid Rocket-Powered Launch Vehicle for Suborbital Flight. Journal of Aerospace Engineering, 2017, 30, .	1.4	7
18	Effects of O/F Shifts on Flight Performances of Vertically Launched Hybrid Sounding Rockets. , 2017, , .		4

Toru Shimada

#	Article	IF	CITATIONS
19	An Introduction to Energetic Materials for Propulsion. Springer Aerospace Technology, 2017, , 3-59.	0.3	8
20	Hybrid Propulsion Technology Development in Japan for Economic Space Launch. Springer Aerospace Technology, 2017, , 545-575.	0.3	6
21	Comparison of Chemical Propulsion Solutions for Large Space Debris Active Removal. Springer Aerospace Technology, 2017, , 985-1011.	0.3	3
22	Design optimization of launch vehicle concept using cluster hybrid rocket engine for future space transportation. Journal of Fluid Science and Technology, 2016, 11, JFST0003-JFST0003.	0.6	1
23	Extinction–reignition superiority in a single-stage sounding hybrid rocket. Aerospace Science and Technology, 2016, 58, 437-444.	4.8	8
24	Quasi 1-D Numerical Analysis of Combustion Instability in Hybrid Rocket Motor Incorporating Boundary Layer Lags. , 2016, , .		4
25	Static Burning Tests on a Bread Board Model of Altering-intensity Swirling-Oxidizer-Flow-Type Hybrid Rocket Engine. , 2016, , .		5
26	Ascendancy of Extinction-Reignition on Single-Stage Hybrid Sounding Rocket in View of Fuels. , 2016, , .		0
27	EFFECT OF OXIDIZER PARTICLE ORIENTATION ON BURNING RATES OF COMPOSITE PROPELLANTS. International Journal of Energetic Materials and Chemical Propulsion, 2016, 15, 285-304.	0.3	0
28	Flight Performance Simulations of Vertical Launched Sounding Rockets Using Altering-Intensity Swirling-Oxidizer-Flow-Type Hybrid Motors. , 2015, , .		7
29	Multidisciplinary Design Exploration for Sounding Launch Vehicle using Hybrid Rocket Engine in View of Ballistic Performance. International Journal of Turbo and Jet Engines, 2015, 32, .	0.7	3
30	Conceptual Design of Single-stage Rocket Using Hybrid Rocket byMeans of Genetic Algorithm. Procedia Engineering, 2015, 99, 198-207.	1.2	9
31	Liquid Films Instability Analysis of Liquefying Hybrid Rocket Fuels Under Supercritical Conditions. AIAA Journal, 2015, 53, 1578-1589.	2.6	19
32	Numerical analysis of multi-parallelized swirling flow inside a circular pipe. Journal of Mechanical Science and Technology, 2015, 29, 951-962.	1.5	1
33	Evolutionary algorithm applied to ballistic launch vehicle design using hybrid rocket engine evaluated by enhanced flight simulation. , 2015, , .		0
34	Structurization of Design Space for Launch Vehicle with Hybrid Rocket Engine Using Stratum-Type Association Analysis. Proceedings in Adaptation, Learning and Optimization, 2015, , 509-521.	1.6	0
35	Combined Analysis of Reactive Flow and Heat Transfer for Hybrid Rocket Design Engineering. , 2014, , .		2
36	Visualization of Flames in Combustion Chamber of Hybrid Rocket Engine with Multi-Section Swirl Injection Method. , 2014, , .		6

TORU SHIMADA

#	Article	IF	CITATIONS
37	Numerical Simulations of Combustive Flows in a Swirling-Oxidizer-Flow-Type Hybrid Rocket. , 2014, , .		16
38	Active debris multi-removal mission concept based on hybrid propulsion. Acta Astronautica, 2014, 103, 26-35.	3.2	24
39	Diversity of design knowledge for launch vehicle in view of fuels on hybrid rocket engine. Journal of Advanced Mechanical Design, Systems and Manufacturing, 2014, 8, JAMDSM0023-JAMDSM0023.	0.7	14
40	Conceptual design: Dependence of parameterization on design performance of three-stage hybrid rocket. Journal of Fluid Science and Technology, 2014, 9, JFST0071-JFST0071.	0.6	3
41	A LINEAR STABILITY ANALYSIS OF OSCILLATORY COMBUSTION INDUCED BY COMBUSTION TIME DELAYS OF LIQUID OXIDIZER IN HYBRID ROCKET MOTORS. International Journal of Energetic Materials and Chemical Propulsion, 2014, 13, 83-96.	0.3	Ο
42	Burning rate anomaly of composite propellant grains. Combustion, Explosion and Shock Waves, 2013, 49, 583-592.	0.8	5
43	Model of Hybrid Rocket Combustion in Classical Hybrid Rocket Motors. , 2013, , .		0
44	Conceptual Design of Single-Stage Launch Vehicle with Hybrid Rocket Engine for Scientific Observation Using Design Informatics. Journal of Space Engineering, 2013, 6, 15-27.	0.8	13
45	Low-Frequency Feed-System-Coupled Combustion Instability in Hybrid Rocket Motors. Journal of Thermal Science and Technology, 2013, 8, 380-394.	1.1	1
46	A Study on Performance Improvement of Paraffin Fueled Hybrid Rocket Engines with Multi-Section Swirl Injection Method. , 2013, , .		5
47	Large Eddy Simulation of Swirling Combustion Flow with Wall Fuel Blowing modeled for Hybrid Rocket Engines. , 2013, , .		1
48	Effects of Multi-Section Swirl Injection Method on Fuel Regression Rate of High Density Polyethylene Fueled Hybrid Rocket Engine. , 2013, , .		4
49	Validation with experiments on simplified numerical prediction of hybrid rocket internal ballistics. , 2012, , .		1
50	On assessment of numerical methods for diffusion-combustion flow with fast chemistry. , 2012, , .		0
51	A Study of Hybrid Rockets with Multi-Section Swirl Injection Method. , 2012, , .		4
52	Solid-Fuel Regression Rate for Standard-Flow Hybrid Rocket Motors. Journal of Thermal Science and Technology, 2012, 7, 387-398.	1.1	2
53	Computational fluid dynamics and frequency-dependent finite-difference time-domain method coupling for the interaction between microwaves and plasma in rocket plumes. Physics of Plasmas, 2012, 19, .	1.9	12
54	Multi-Stage Hybrid Rocket Conceptual Design for Micro-Satellites Launch using Genetic Algorithm. Transactions of the Japan Society for Aeronautical and Space Sciences, 2012, 55, 229-236.	0.7	15

Toru Shimada

#	Article	IF	CITATIONS
55	CHARACTERISTICS OF CHEMICALLY MODIFIED AND NANOCOMPOSITE POLYMERS AS NOVEL FUELS FOR HYBRID ROCKET PROPULSION. International Journal of Energetic Materials and Chemical Propulsion, 2012, 11, 549-566.	0.3	2
56	Correlation of Midweb Anomaly with Microstructure of Composite Propellant Containing High Amount of Aluminum. , 2011, , .		2
57	Visualization and Emission Spectra of Flames in Combustion Chamber of Swirling-Oxidizer-Flow-Type Hybrid Rocket Engines. Journal of Thermal Science and Technology, 2011, 6, 268-277.	1.1	17
58	Polymer Combustion as a Basis for Hybrid Propulsion: A Comprehensive Review and New Numerical Approaches. Energies, 2011, 4, 1779-1839.	3.1	17
59	Solid propulsion for space applications: An updated roadmap. Acta Astronautica, 2010, 66, 201-219.	3.2	77
60	Advanced Computer Science on Internal Ballistics of Solid Rocket Motors. Transactions of the Japan Society for Aeronautical and Space Sciences Aerospace Technology Japan, 2010, 8, Pa_29-Pa_37.	0.2	3
61	Experimental Investigation on Microwave Interference in Full-Scale Solid Rocket Exhaust. Journal of Spacecraft and Rockets, 2010, 47, 627-633.	1.9	14
62	Correlation of Midweb Anomaly with Microstructure of Composite Propellant. , 2010, , .		0
63	Numerical Investigation of Roll Torque Induced by Solid Rocket Motor Internal Flow. Journal of Propulsion and Power, 2009, 25, 1300-1310.	2.2	5
64	EXPERIMENTAL STUDY ON MIDWEB ANOMALY OF COMPOSITE PROPELLANT GRAINS. International Journal of Energetic Materials and Chemical Propulsion, 2009, 8, 147-158.	0.3	4
65	COMBUSTION MECHANISM OF TETRA-OL GLYCIDYL AZIDE POLYMER AND ITS APPLICATION TO HYBRID ROCKETS. International Journal of Energetic Materials and Chemical Propulsion, 2009, 8, 555-570.	0.3	3
66	Numerical Investigation of Roll Torque Induced by Solid Rocket Motor Internal Flow. , 2008, , .		1
67	Stability Analysis of Solid Rocket Motor Combustion by Computational Fluid Dynamics. AIAA Journal, 2008, 46, 947-957.	2.6	8
68	Flow Inside a Solid Rocket Motor with Relation to Nozzle Inlet Ablation. AIAA Journal, 2007, 45, 1324-1332.	2.6	25
69	X-ray visualization measurement of slurry flow in solid propellant casting. Flow Measurement and Instrumentation, 2007, 18, 235-240.	2.0	14
70	Evaluation of Ablation and Longitudinal Vortices in Solid Rocket Motor by Computational Fluid Dynamics. , 2006, , .		8
71	Flow visualization of slurry fluid using two-directional X-ray photograph. Journal of the Visualization Society of Japan, 2006, 26, 197-198.	0.0	2
72	A test of equivalence of the variableâ€hardâ€sphere and inverseâ€powerâ€law models in the directâ€simulation Monte Carlo method. Physics of Fluids A, Fluid Dynamics, 1991, 3, 1835-1837.	1.6	15