Ian B Dodd

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8602965/publications.pdf

Version: 2024-02-01

63

all docs

60 3,467 27
papers citations h-index

63

docs citations

h-index g-index

63 3560
times ranked citing authors

56

#	Article	IF	Citations
1	The loopometer: a quantitative <i>in vivo</i> assay for DNA-looping proteins. Nucleic Acids Research, 2021, 49, e39-e39.	6.5	6
2	The pIT5 Plasmid Series, an Improved Toolkit for Repeated Genome Integration in <i>E. coli</i> ACS Synthetic Biology, 2021, 10, 1633-1639.	1.9	1
3	Analysis of Infection Time Courses Shows CII Levels Determine the Frequency of Lysogeny in Phage 186. Pharmaceuticals, 2021, 14, 998.	1.7	1
4	Instability of CII is needed for efficient switching between lytic and lysogenic development in bacteriophage 186. Nucleic Acids Research, 2020, 48, 12030-12041.	6.5	3
5	A quantitative binding model for the Apl protein, the dual purpose recombination-directionality factor and lysis-lysogeny regulator of bacteriophage 186. Nucleic Acids Research, 2020, 48, 8914-8926.	6.5	1
6	RNA polymerase pausing at a protein roadblock can enhance transcriptional interference by promoter occlusion. FEBS Letters, 2019, 593, 903-917.	1.3	5
7	Positive and Negative Control of Enhancer-Promoter Interactions by Other DNA Loops Generates Specificity and Tunability. Cell Reports, 2019, 26, 2419-2433.e3.	2.9	19
8	Directing traffic on DNA—How transcription factors relieve or induce transcriptional interference. Transcription, 2017, 8, 120-125.	1.7	25
9	Efficient chromosomal-scale DNA looping in Escherichia coli using multiple DNA-looping elements. Nucleic Acids Research, 2017, 45, 5074-5085.	6.5	7
10	Programmable DNA looping using engineered bivalent dCas9 complexes. Nature Communications, 2017, 8, 1628.	5.8	60
11	Modeling Bistable Chromatin States. , 2017, , 145-168.		2
12	Nucleosome dynamics and maintenance of epigenetic states of CpG islands. Physical Review E, 2016, 93, 062417.	0.8	11
13	The role of repressor kinetics in relief of transcriptional interference between convergent promoters. Nucleic Acids Research, 2016, 44, 6625-6638.	6.5	25
14	DNA methylation in human epigenomes depends on local topology of CpG sites. Nucleic Acids Research, 2016, 44, 5123-5132.	6.5	153
15	Cooperative stabilization of the SIR complex provides robust epigenetic memory in a model of SIR silencing in <i>Saccharomyces cerevisiae</i> Lepigenetics, 2015, 10, 293-302.	1.3	17
16	Road rules for traffic on DNAâ€"systematic analysis of transcriptional roadblocking <i>in vivo</i> . Nucleic Acids Research, 2014, 42, 8861-8872.	6.5	44
17	Quantitation of the DNA tethering effect in long-range DNA looping in vivo and in vitro using the Lac and \hat{l} » repressors. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 349-354.	3. 3	47
18	Promoter Activation by CII, a Potent Transcriptional Activator from Bacteriophage 186. Journal of Biological Chemistry, 2014, 289, 32094-32108.	1.6	5

#	Article	lF	Citations
19	Collaboration between CpG sites is needed for stable somatic inheritance of DNA methylation states. Nucleic Acids Research, 2014, 42, 2235-2244.	6.5	83
20	Quantitation of interactions between two DNA loops demonstrates loop domain insulation in <i>E. coli cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4449-57.</i>	3.3	25
21	In Silico, InÂVitro, and InÂVivo Estimation of J-Factors for LAC Repressor-Mediated DNA Loop Formation. Biophysical Journal, 2013, 104, 174a-175a.	0.2	0
22	Enhancer-like long-range transcriptional activation by \hat{l} » CI-mediated DNA looping. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2922-2927.	3.3	34
23	One-Step Cloning and Chromosomal Integration of DNA. ACS Synthetic Biology, 2013, 2, 537-541.	1.9	189
24	Bacteriophage lambda repressor mediates the formation of a complex enhancer-like structure. Transcription, 2013, 4, 201-205.	1.7	3
25	Single molecule analysis of DNA wrapping and looping by a circular 14mer wheel of the bacteriophage 186 CI repressor. Nucleic Acids Research, 2013, 41, 5746-5756.	6.5	22
26	A Simple Histone Code Opens Many Paths to Epigenetics. PLoS Computational Biology, 2012, 8, e1002643.	1.5	44
27	Barriers and Silencers: A Theoretical Toolkit for Control and Containment of Nucleosome-Based Epigenetic States. Journal of Molecular Biology, 2011, 414, 624-637.	2.0	50
28	Identification of residues in the N-terminal PAS domains important for dimerization of Arnt and AhR. Nucleic Acids Research, 2011, 39, 3695-3709.	6.5	37
29	Minimal Gene Regulatory Circuits for a Lysis-Lysogeny Choice in the Presence of Noise. PLoS ONE, 2010, 5, e15037.	1.1	16
30	Theory for the stability and regulation of epigenetic landscapes. Physical Biology, 2010, 7, 026010.	0.8	56
31	Economy of Operon Formation: Cotranscription Minimizes Shortfall in Protein Complexes. MBio, 2010, 1, .	1.8	31
32	Why Do Phage Play Dice?. Journal of Virology, 2009, 83, 11416-11420.	1.5	49
33	Minimal Gene Regulatory Circuits that Can Count like Bacteriophage Lambda. Journal of Molecular Biology, 2009, 394, 681-693.	2.0	12
34	Potent Transcriptional Interference by Pausing of RNA Polymerases over a Downstream Promoter. Molecular Cell, 2009, 34, 545-555.	4.5	81
35	The Generation of Promoter-Mediated Transcriptional Noise in Bacteria. PLoS Computational Biology, 2008, 4, e1000109.	1.5	52
36	Ultrasensitive gene regulation by positive feedback loops in nucleosome modification. Molecular Systems Biology, 2008, 4, 182.	3.2	58

#	Article	IF	Citations
37	Cro's role in the Cl–Cro bistable switch is critical for λ's transition from lysogeny to lytic development. Genes and Development, 2007, 21, 2461-2472.	2.7	84
38	Theoretical Analysis of Epigenetic Cell Memory by Nucleosome Modification. Cell, 2007, 129, 813-822.	13.5	413
39	Modelling Transcriptional Interference and DNA Looping in Gene Regulation. Journal of Molecular Biology, 2007, 369, 1200-1213.	2.0	21
40	The Structural Basis of Cooperative Regulation at an Alternate Genetic Switch. Molecular Cell, 2006, 21, 605-615.	4.5	30
41	Network models of phage-bacteria coevolution. Physical Review E, 2006, 74, 066105.	0.8	9
42	Functional Alignment of Regulatory Networks: A Study of Temperate Phages. PLoS Computational Biology, 2005, 1, e74.	1.5	23
43	A Mathematical Model for Transcriptional Interference by RNA Polymerase Traffic in Escherichia coli. Journal of Molecular Biology, 2005, 346, 399-409.	2.0	96
44	Revisited gene regulation in bacteriophage î». Current Opinion in Genetics and Development, 2005, 15, 145-152.	1.5	121
45	Bacteriophage P4 Vis protein is needed for prophage excision. Virology, 2004, 322, 82-92.	1.1	21
46	Cooperativity in long-range gene regulation by the \hat{A} CI repressor. Genes and Development, 2004, 18, 344-354.	2.7	161
47	The Helix-Turn-Helix Motif of the Coliphage 186 Immunity Repressor Binds to Two Distinct Recognition Sequences. Journal of Biological Chemistry, 2002, 277, 3186-3194.	1.6	22
48	Action at a distance in CI repressor regulation of the bacteriophage 186 genetic switch. Molecular Microbiology, 2002, 45, 697-710.	1.2	43
49	Octamerization of lambda CI repressor is needed for effective repression of PRM and efficient switching from lysogeny. Genes and Development, 2001, 15, 3013-3022.	2.7	159
50	The Late-Expressed Region of the Temperate Coliphage 186 Genome. Virology, 1998, 248, 117-130.	1.1	22
51	Defining the SOS Operon of Coliphage 186. Virology, 1996, 219, 105-114.	1.1	23
52	TheEscherichia coliRetrons Ec67 and Ec86 Replace DNA between thecosSite and a Transcription Terminator of a 186-Related Prophage. Virology, 1996, 219, 115-124.	1.1	22
53	DNA Binding by the Coliphage 186 Repressor Protein Cl. Journal of Biological Chemistry, 1996, 271, 11532-11540.	1.6	22
54	The Cro-like Apl repressor of coliphage 186 is required for prophage excision and binds near the phage attachment site. Molecular Microbiology, 1993, 10, 1139-1150.	1,2	29

#	Article	lF	CITATIONS
55	Improved detection of helix-turn-helix DNA-binding motifs in protein sequences. Nucleic Acids Research, 1990, 18, 5019-5026.	6.5	562
56	Control of gene expression in the temperate coliphage 186. Journal of Molecular Biology, 1990, 214, 27-37.	2.0	44
57	The prediction of helix-turn-helix DNA-binding regions in proteins. A reply to Yudkin. Protein Engineering, Design and Selection, 1988, 2, 174-175.	1.0	11
58	Systematic method for the detection of potential λ Cro-like DNA-binding regions in proteins. Journal of Molecular Biology, 1987, 194, 557-564.	2.0	204
59	Control of gene expression in the P2-related template coliphages. Journal of Molecular Biology, 1986, 191, 199-209.	2.0	50
60	Control of Enhancer-Promoter Contact by Alternative DNA Loops. SSRN Electronic Journal, 0, , .	0.4	0