
Bin Ding

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/860266/publications.pdf Version: 2024-02-01

RIN DINC

#	Article	IF	CITATIONS
1	Molecular Engineering of Thienyl Functionalized Ullazines as Holeâ€Transporting Materials for Perovskite Solar Cells. Solar Rrl, 2022, 6, .	5.8	5
2	Mixed cation 2D perovskite: a novel approach for enhanced perovskite solar cell stability. Sustainable Energy and Fuels, 2022, 6, 2471-2477.	4.9	9
3	Halide exchange in the passivation of perovskite solar cells with functionalized ionic liquids. Cell Reports Physical Science, 2022, 3, 100848.	5.6	9
4	Single-crystalline TiO2 nanoparticles for stable and efficient perovskite modules. Nature Nanotechnology, 2022, 17, 598-605.	31.5	121
5	Triarylamine-Functionalized Imidazolyl-Capped Bithiophene Hole Transporting Material for Cost-Effective Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 22053-22060.	8.0	8
6	Anion Exchangeâ€Induced Crystal Engineering via Hotâ€Pressing Sublimation Affording Highly Efficient and Stable Perovskite Solar Cells. Solar Rrl, 2021, 5, 2000729.	5.8	6
7	Cut from the Same Cloth: Enamine-Derived Spirobifluorenes as Hole Transporters for Perovskite Solar Cells. Chemistry of Materials, 2021, 33, 6059-6067.	6.7	7
8	Engineering long-term stability into perovskite solar cells via application of a multi-functional TFSI-based ionic liquid. Cell Reports Physical Science, 2021, 2, 100475.	5.6	25
9	Expanded Phase Distribution in Low Average Layerâ€Number 2D Perovskite Films: Toward Efficient Semitransparent Solar Cells. Advanced Functional Materials, 2021, 31, 2104868.	14.9	17
10	Dopantâ€Free Hole Transport Materials Afford Efficient and Stable Inorganic Perovskite Solar Cells and Modules. Angewandte Chemie, 2021, 133, 20652-20660.	2.0	6
11	Dopantâ€Free Hole Transport Materials Afford Efficient and Stable Inorganic Perovskite Solar Cells and Modules. Angewandte Chemie - International Edition, 2021, 60, 20489-20497.	13.8	56
12	Tuning structural isomers of phenylenediammonium to afford efficient and stable perovskite solar cells and modules. Nature Communications, 2021, 12, 6394.	12.8	98
13	Greatly enhanced power conversion efficiency of hole-transport-layer-free perovskite solar cell via coherent interfaces of perovskite and carbon layers. Nano Energy, 2020, 77, 105110.	16.0	31
14	(C ₆ H ₅ NH ₃)Bil ₄ : a lead-free perovskite with >330 days humidity stability for optoelectronic applications. Journal of Materials Chemistry A, 2019, 7, 15722-15730.	10.3	33
15	Green Solution-Processed Tin-Based Perovskite Films for Lead-Free Planar Photovoltaic Devices. ACS Applied Materials & Interfaces, 2019, 11, 3053-3060.	8.0	27
16	Highly stable carbon-based perovskite solar cell with a record efficiency of over 18% via hole transport engineering. Journal of Materials Science and Technology, 2019, 35, 987-993.	10.7	123
17	Cost effective perovskite solar cells with a high efficiency and open-circuit voltage based on a perovskite-friendly carbon electrode. Journal of Materials Chemistry A, 2018, 6, 8271-8279.	10.3	57
18	Low-temperature SnO ₂ -modified TiO ₂ yields record efficiency for normal planar perovskite solar modules. Journal of Materials Chemistry A, 2018, 6, 10233-10242.	10.3	75

Bin Ding

#	Article	IF	CITATIONS
19	(C ₆ H ₅ CH ₂ NH ₃) ₂ CuBr ₄ : A Lead-Free, Highly Stable Two-Dimensional Perovskite for Solar Cell Applications. ACS Applied Energy Materials, 2018, 1, 2709-2716.	5.1	73
20	Excellent Stability of Perovskite Solar Cells by Passivation Engineering. Solar Rrl, 2018, 2, 1800088.	5.8	61
21	Material nucleation/growth competition tuning towards highly reproducible planar perovskite solar cells with efficiency exceeding 20%. Journal of Materials Chemistry A, 2017, 5, 6840-6848.	10.3	149
22	Ultra-high open-circuit voltage of perovskite solar cells induced by nucleation thermodynamics on rough substrates. Scientific Reports, 2017, 7, 46141.	3.3	71
23	Fast Drying Boosted Performance Improvement of Low-Temperature Paintable Carbon-Based Perovskite Solar Cell. ACS Sustainable Chemistry and Engineering, 2017, 5, 9758-9765.	6.7	35
24	Realizing full coverage of perovskite film on substrate surface during solution processing: Characterization and elimination of uncovered surface. Journal of Power Sources, 2016, 320, 204-211.	7.8	18
25	Facile and Scalable Fabrication of Highly Efficient Lead Iodide Perovskite Thin-Film Solar Cells in Air Using Gas Pump Method. ACS Applied Materials & Interfaces, 2016, 8, 20067-20073.	8.0	88
26	Preparation of flexible perovskite solar cells by a gas pump drying method on a plastic substrate. Journal of Materials Chemistry A, 2016, 4, 3704-3710.	10.3	87
27	Interfacial and compositional Engineering to Afford Efficient and Stable Perovskite Solar Cells and Modules. , 0, , .		0