
S M Riazul Islam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8602620/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Internet of Things for Health Care: A Comprehensive Survey. IEEE Access, 2015, 3, 678-708.	2.6	2,179
2	Power-Domain Non-Orthogonal Multiple Access (NOMA) in 5G Systems: Potentials and Challenges. IEEE Communications Surveys and Tutorials, 2017, 19, 721-742.	24.8	1,698
3	A smart healthcare monitoring system for heart disease prediction based on ensemble deep learning and feature fusion. Information Fusion, 2020, 63, 208-222.	11.7	429
4	Resource Allocation for Downlink NOMA Systems: Key Techniques and Open Issues. IEEE Wireless Communications, 2018, 25, 40-47.	6.6	295
5	An intelligent healthcare monitoring framework using wearable sensors and social networking data. Future Generation Computer Systems, 2021, 114, 23-43.	4.9	215
6	Type-2 fuzzy ontology–aided recommendation systems for IoT–based healthcare. Computer Communications, 2018, 119, 138-155.	3.1	142
7	A multilayer multimodal detection and prediction model based on explainable artificial intelligence for Alzheimer's disease. Scientific Reports, 2021, 11, 2660.	1.6	125
8	Multimodal multitask deep learning model for Alzheimer's disease progression detection based on time series data. Neurocomputing, 2020, 412, 197-215.	3.5	116
9	Fuzzy ontology-based sentiment analysis of transportation and city feature reviews for safe traveling. Transportation Research Part C: Emerging Technologies, 2017, 77, 33-48.	3.9	112
10	A Study of MAC Protocols for WBANs. Sensors, 2010, 10, 128-145.	2.1	105
11	An Internet of Things-based health prescription assistant and its security system design. Future Generation Computer Systems, 2018, 82, 422-439.	4.9	105
12	Mobile Health in Remote Patient Monitoring for Chronic Diseases: Principles, Trends, and Challenges. Diagnostics, 2021, 11, 607.	1.3	81
13	End-To-End Deep Learning Framework for Coronavirus (COVID-19) Detection and Monitoring. Electronics (Switzerland), 2020, 9, 1439.	1.8	77
14	Plasmonic temperature sensor using D-shaped photonic crystal fiber. Results in Physics, 2020, 16, 102966.	2.0	72
15	Machine Learning and Deep Learning Approaches for Brain Disease Diagnosis: Principles and Recent Advances. IEEE Access, 2021, 9, 37622-37655.	2.6	69
16	D-MoSK Modulation in Molecular Communications. IEEE Transactions on Nanobioscience, 2015, 14, 680-683.	2.2	64
17	Medical Diagnostic Systems Using Artificial Intelligence (AI) Algorithms: Principles and Perspectives. IEEE Access, 2020, 8, 228049-228069.	2.6	63
18	Multiomics Analysis Reveals that GLS and GLS2 Differentially Modulate the Clinical Outcomes of Cancer. Journal of Clinical Medicine, 2019, 8, 355.	1.0	60

#	Article	IF	CITATIONS
19	Machine learning in the prediction of cancer therapy. Computational and Structural Biotechnology Journal, 2021, 19, 4003-4017.	1.9	58
20	An Enhanced Anomaly Detection in Web Traffic Using a Stack of Classifier Ensemble. IEEE Access, 2020, 8, 24120-24134.	2.6	54
21	Energy Saving Mechanisms for MAC Protocols in Wireless Sensor Networks. International Journal of Distributed Sensor Networks, 2010, 6, 163413.	1.3	49
22	A power efficient MAC protocol for wireless body area networks. Eurasip Journal on Wireless Communications and Networking, 2012, 2012, .	1.5	47
23	Numerical development of high performance quasi D-shape PCF-SPR biosensor: An external sensing approach employing gold. Results in Physics, 2020, 18, 103281.	2.0	43
24	Programmable Molecular Scissors: Applications of a New Tool for Genome Editing in Biotech. Molecular Therapy - Nucleic Acids, 2019, 14, 212-238.	2.3	41
25	Numerical Study of Circularly Slotted Highly Sensitive Plasmonic Biosensor: A Novel Approach. Results in Physics, 2020, 17, 103130.	2.0	41
26	SCNN: Scalogram-based convolutional neural network to detect obstructive sleep apnea using single-lead electrocardiogram signals. Computers in Biology and Medicine, 2021, 134, 104532.	3.9	41
27	Merged Ontology and SVM-Based Information Extraction and Recommendation System for Social Robots. IEEE Access, 2017, 5, 12364-12379.	2.6	40
28	High sensitivity hollow core circular shaped PCF surface plasmonic biosensor employing silver coat: A numerical design and analysis with external sensing approach. Results in Physics, 2020, 16, 102909.	2.0	39
29	On Downlink NOMA in Heterogeneous Networks With Non-Uniform Small Cell Deployment. IEEE Access, 2018, 6, 31099-31109.	2.6	36
30	Secure crowd-sensing protocol for fog-based vehicular cloud. Future Generation Computer Systems, 2021, 120, 61-75.	4.9	33
31	Preamble-based improved channel estimation for multiband UWB system in presence of interferences. Telecommunication Systems, 2013, 52, 1-14.	1.6	30
32	Hybrid CNN-SVD Based Prominent Feature Extraction and Selection for Grading Diabetic Retinopathy Using Extreme Learning Machine Algorithm. IEEE Access, 2021, 9, 152261-152274.	2.6	30
33	Multimedia communication over cognitive radio networks from QoS/QoE perspective: A comprehensive survey. Journal of Network and Computer Applications, 2020, 172, 102759.	5.8	29
34	An IoT-Based Anonymous Function for Security and Privacy in Healthcare Sensor Networks. Sensors, 2019, 19, 3146.	2.1	28
35	Software-Defined Network-Based Vehicular Networks: A Position Paper on Their Modeling and Implementation. Sensors, 2019, 19, 3788.	2.1	28
36	Software Defined Network-Based Multi-Access Edge Framework for Vehicular Networks. IEEE Access, 2020, 8, 4220-4234.	2.6	28

#	Article	IF	CITATIONS
37	Capacity and outage analysis of a dual-hop decode-and-forward relay-aided NOMA scheme. , 2019, 88, 138-148.		26
38	Precision Medicine Informatics: Principles, Prospects, and Challenges. IEEE Access, 2020, 8, 13593-13612.	2.6	26
39	The IoT: Exciting Possibilities for Bettering Lives: Special application scenarios. IEEE Consumer Electronics Magazine, 2016, 5, 49-57.	2.3	25
40	Systematic Multiomics Analysis of Alterations in C1QBP mRNA Expression and Relevance for Clinical Outcomes in Cancers. Journal of Clinical Medicine, 2019, 8, 513.	1.0	24
41	Secrecy Performance Analysis of Mixed <i>î±</i> â^' <i>î¼</i> and Exponentiated Weibull RF-FSO Cooperative Relaying System. IEEE Access, 2021, 9, 72342-72356.	2.6	24
42	A Comprehensive Medical Decision–Support Framework Based on a Heterogeneous Ensemble Classifier for Diabetes Prediction. Electronics (Switzerland), 2019, 8, 635.	1.8	23
43	On Secrecy Performance of Mixed Generalized Gamma and Málaga RF-FSO Variable Gain Relaying Channel. IEEE Access, 2020, 8, 104127-104138.	2.6	23
44	Asymmetrical D-channel photonic crystal fiber-based plasmonic sensor using the wavelength interrogation and lower birefringence peak method. Results in Physics, 2020, 19, 103372.	2.0	22
45	Milled Microchannel-Assisted Open D-Channel Photonic Crystal Fiber Plasmonic Biosensor. IEEE Access, 2021, 9, 2924-2933.	2.6	22
46	Security at the Physical Layer Over GG Fading and mEGG Turbulence Induced RF-UOWC Mixed System. IEEE Access, 2021, 9, 18123-18136.	2.6	21
47	Auto-Colorization of Historical Images Using Deep Convolutional Neural Networks. Mathematics, 2020, 8, 2258.	1.1	20
48	Statistical Characterization of a 3-D Propagation Model for V2V Channels in Rectangular Tunnels. IEEE Antennas and Wireless Propagation Letters, 2017, 16, 2392-2395.	2.4	19
49	Impact of Correlation and Pointing Error on Secure Outage Performance Over Arbitrary Correlated Nakagami-\$m\$ and \$mathcal {M}\$-Turbulent Fading Mixed RF-FSO Channel. IEEE Photonics Journal, 2021, 13, 1-17.	1.0	19
50	A highly sensitive quadruple D-shaped open channel photonic crystal fiber plasmonic sensor: A comparative study on materials effect. Results in Physics, 2021, 23, 104050.	2.0	19
51	On PHY and MAC Performance in Body Sensor Networks. Eurasip Journal on Wireless Communications and Networking, 2009, 2009, .	1.5	17
52	Secrecy Performance Analysis of Mixed Hyper-Gamma and Gamma-Gamma Cooperative Relaying System. IEEE Access, 2020, 8, 131273-131285.	2.6	17
53	GAFOR: Genetic Algorithm Based Fuzzy Optimized Re-Clustering in Wireless Sensor Networks. Mathematics, 2021, 9, 43.	1.1	17
54	Objective Diagnosis for Histopathological Images Based on Machine Learning Techniques: Classical Approaches and New Trends. Mathematics, 2020, 8, 1863.	1.1	16

#	Article	IF	CITATIONS
55	loTaaS: Drone-Based Internet of Things as a Service Framework for Smart Cities. IEEE Internet of Things Journal, 2022, 9, 12425-12439.	5.5	16
56	Outage capacity and source distortion analysis for NOMA users in 5G systems. Electronics Letters, 2016, 52, 1344-1345.	0.5	14
57	CASH: Content- and Network-Context-Aware Streaming Over 5G HetNets. IEEE Access, 2018, 6, 46167-46178.	2.6	14
58	On Channel Estimation in MB-OFDM UWB Systems with Time Varying Dispersive Fading Channel. International Journal of Digital Content Technology and Its Applications, 2010, 4, 18-24.	0.1	12
59	A Comprehensive Study of Channel Estimation for WBAN-based Healthcare Systems: Feasibility of Using Multiband UWB. Journal of Medical Systems, 2012, 36, 1553-1567.	2.2	12
60	Control Plane Optimisation for an SDN-Based WBAN Framework to Support Healthcare Applications. Sensors, 2020, 20, 4200.	2.1	12
61	Performance Analysis of IoT-Based Health and Environment WSN Deployment. Sensors, 2020, 20, 5923.	2.1	12
62	Internet of Things (IoT)-Based Wireless Health: Enabling Technologies and Applications. Electronics (Switzerland), 2021, 10, 148.	1.8	11
63	Prognostic role of <i>EGR1</i> in breast cancer: a systematic review. BMB Reports, 2021, 54, 497-504.	1.1	11
64	Secure channel for molecular communications. , 2017, , .		10
65	RDSP: Rapidly Deployable Wireless Ad Hoc System for Post-Disaster Management. Sensors, 2020, 20, 548.	2.1	10
66	Numerical Design and Investigation of Circularly Segmented Air Holes-Assisted Hollow-Core Terahertz Waveguide as Optical Chemical Sensor. IEEE Access, 2021, 9, 86155-86165.	2.6	10
67	Capacity Maximized Power Allocation for Secondary Users in OFDM-Based Cognitive Networks. , 2008, ,		8
68	AEF: Adaptive En-Route Filtering to Extend Network Lifetime in Wireless Sensor Networks. Sensors, 2019, 19, 4036.	2.1	8
69	Device-to-Device Aided Cooperative NOMA Transmission Exploiting Overheard Signal. IEEE Transactions on Wireless Communications, 2022, 21, 1304-1318.	6.1	8
70	Joint Content Placement and Storage Allocation Based on Federated Learning in F-RANs. Sensors, 2021, 21, 215.	2.1	8
71	A conceptual framework for an IoT-based health assistant and its authorization model. , 2018, , .		7
72	Simultaneous Cellular and D2D Communications Exploiting Cooperative Uplink NOMA. IEEE Communications Letters, 2021, 25, 1848-1852.	2.5	7

#	Article	IF	CITATIONS
73	Two-Stage Channel Estimation With Estimated Windowing for MB-OFDM UWB System. IEEE Communications Letters, 2016, 20, 272-275.	2.5	6

On the Intercept Probability and Secure Outage Analysis of Mixed ($\langle i \rangle \hat{1} \pm \langle i \rangle \hat{a} \in (\langle i \rangle \hat{i}^2 \langle i \rangle \hat{i}^2 \langle i \rangle \hat{i} \otimes (\langle i \rangle \hat{i}^2 \langle i \rangle \hat{i} \otimes (\langle i \rangle \hat{i}^2 \langle i \rangle \hat{i} \otimes (\langle i \rangle \hat{i}^2 \langle i \rangle \hat{i} \otimes (\langle i \rangle \hat{i$

75	Exploiting Secrecy Performance of Uplink NOMA in Cellular Networks. IEEE Access, 2021, 9, 95135-95154.	2.6	6
76	Kinematic Measurements of Novel Chaotic Micromixers to Enhance Mixing Performances at Low Reynolds Numbers: Comparative Study. Micromachines, 2021, 12, 364.	1.4	6
77	Introducing Cloud-Assisted Micro-Service-Based Software Development Framework for Healthcare Systems. IEEE Access, 2022, 10, 33332-33348.	2.6	6
78	Device-to-Device Aided Cooperative Relaying Scheme Exploiting Spatial Modulation: An Interference Free Strategy. Sensors, 2020, 20, 7048.	2.1	5
79	Development of Duplex Eye Contact Framework for Human-Robot Inter Communication. IEEE Access, 2021, 9, 54435-54456.	2.6	5
80	Electromagnetic Nanocommunication Networks: Principles, Applications, and Challenges. IEEE Access, 2021, 9, 166147-166165.	2.6	5
81	A TR-UWB Downconversion Autocorrelation Receiver for Wireless Body Area Network. Eurasip Journal on Wireless Communications and Networking, 2009, 2009, .	1.5	4
82	Energy-efficient channel estimation for MB-OFDM UWB system in presence of interferences. , 2010, , .		4
83	Channel estimation in ECMA-368-based UWB systems with unknown interference. Telecommunication Systems, 2011, 52, 1159.	1.6	4
84	Environment Friendly Energy Cooperation in Neighboring Buildings: A Transformed Linearization Approach. Energies, 2022, 15, 1160.	1.6	4
85	CATComp: A Compression-Aware Authorization Protocol for Resource-Efficient Communications in IoT Networks. IEEE Internet of Things Journal, 2022, 9, 1667-1682.	5.5	3
86	A novel framework for approximating resistance–temperature characteristics of a superconducting film based on artificial neural networks. Results in Physics, 2021, 24, 104088.	2.0	3
87	Fuzzy Domain Ontology-based Opinion Mining for Transportation Network Monitoring and City Features Map. The Journal of the Korea Institute of Intelligent Transport Systems, 2016, 15, 109-118.	0.1	3
88	A Fuzzy System based Approach to Extend Network Lifetime for En-Route Filtering Schemes in WSNs. , 2019, , .		2
89	Modeling MAC Protocol Based on Frame Slotted Aloha for Low Energy Critical Infrastructure Sensor Networks. International Journal of Distributed Sensor Networks, 2015, 11, 701418.	1.3	2
90	VSDM: A Virtual Service Device Management Scheme for UPnP-Based IoT Networks. , 2020, , .		2

#	Article	IF	CITATIONS
91	Prognostic role of EGR1 in breast cancer: a systematic review. BMB Reports, 2021, 54, 497-504.	1.1	2
92	Minimum mean square error-ordered successive interference cancellation (MMSEOSIC) in UWB-MIMO systems. , 2010, , .		1
93	Physical Layer Security for Cooperative Multihop Routing in Wireless Networks. , 2019, , .		1
94	SUPnP: Secure Access and Service Registration for UPnP-Enabled Internet of Things. IEEE Internet of Things Journal, 2021, 8, 11561-11580.	5.5	1
95	Opportunistic Relay Selection Over Generalized Fading and Inverse Gamma Composite Fading Mixed Multicast Channels: A Secrecy Tradeoff. IEEE Access, 2021, 9, 166184-166205.	2.6	1
96	Joint Channel Estimation and Interference Suppressions for MB-OFDM UWB Systems. , 2010, , .		0
97	Channel estimation in high date rate UWB system with unknown narrowband interference. Annales Des Telecommunications/Annals of Telecommunications, 2013, 68, 503-514.	1.6	0
98	SIR performance evaluation of MBâ€OFDM UWB system with residual timing offset. Electronics Letters, 2015, 51, 427-429.	0.5	0
99	MSGM: A Markov Model Based Similarity Guide Matrix for Optimising Ordered Problems by Balanced-Evolution Genetic Algorithms. IEEE Access, 2020, 8, 210286-210300.	2.6	0
100	Impact of Aperture Averaging and Antenna Correlation on the Secrecy Outage Performance over Mixed RF-FSO Cooperative System under Simultaneous RF and FSO Favesdropping Attempts 2021		0

Mixed RF-FSO Cooperative System under Simultaneous RF and FSO Eavesdropping Attempts. , 2021, , . 100