Daniela Weiskopf

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8602502/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Safety and Immunogenicity of an Inactivated Severe Acute Respiratory Syndrome Coronavirus 2 Vaccine in a Subgroup of Healthy Adults in Chile. Clinical Infectious Diseases, 2022, 75, e792-e804.	2.9	73
2	Dichotomy between the humoral and cellular responses elicited by mRNA and adenoviral vector vaccines against SARS-CoV-2. BMC Medicine, 2022, 20, 32.	2.3	7
3	Involvement of Th1Th17 Cell Subpopulations in the Immune Responses of Mothers Who Gave Birth to Children with Congenital Zika Syndrome (CZS). Viruses, 2022, 14, 250.	1.5	1
4	Ancestral SARS-CoV-2-specific T cells cross-recognize the Omicron variant. Nature Medicine, 2022, 28, 472-476.	15.2	333
5	A Population of CD4+CD8+ Double-Positive T Cells Associated with Risk of Plasma Leakage in Dengue Viral Infection. Viruses, 2022, 14, 90.	1.5	8
6	T cell responses to SARS-CoV-2 spike cross-recognize Omicron. Nature, 2022, 603, 488-492.	13.7	430
7	SARS-CoV-2 vaccination induces immunological T cell memory able to cross-recognize variants from Alpha to Omicron. Cell, 2022, 185, 847-859.e11.	13.5	590
8	Limited induction of SARS-CoV-2–specific T cell responses in children with multisystem inflammatory syndrome compared with COVID-19. JCI Insight, 2022, 7, .	2.3	17
9	Current Understanding of the Role of T Cells in Chikungunya, Dengue and Zika Infections. Viruses, 2022, 14, 242.	1.5	13
10	Germinal center responses to SARS-CoV-2 mRNA vaccines in healthy and immunocompromised individuals. Cell, 2022, 185, 1008-1024.e15.	13.5	101
11	Development of a TÂcell-based immunodiagnostic system to effectively distinguish SARS-CoV-2 infection and COVID-19 vaccination status. Cell Host and Microbe, 2022, 30, 388-399.e3.	5.1	26
12	Divergent SARS-CoV-2 Omicron–reactive T and B cell responses in COVID-19 vaccine recipients. Science Immunology, 2022, 7, eabo2202.	5.6	337
13	Preserved SARS-CoV-2 Vaccine Cell-Mediated Immunogenicity in Patients With Inflammatory Bowel Disease on Immune-Modulating Therapies. Clinical and Translational Gastroenterology, 2022, 13, e00484.	1.3	8
14	Mild SARS-CoV-2 infection in rhesus macaques is associated with viral control prior to antigen-specific T cell responses in tissues. Science Immunology, 2022, 7, eabo0535.	5.6	17
15	Deciphering the quality of SARS oVâ€2 specific Tâ€cell response associated with disease severity, immune memory and heterologous response. Clinical and Translational Medicine, 2022, 12, e802.	1.7	8
16	Observations and perspectives on adaptive immunity to SARS-CoV-2. Clinical Infectious Diseases, 2022, ,	2.9	10
17	Transcriptomics of Acute DENV-Specific CD8+ T Cells Does Not Support Qualitative Differences as Drivers of Disease Severity. Vaccines, 2022, 10, 612.	2.1	6
18	An efficient immunoassay for the B cell help function of SARS-CoV-2-specific memory CD4+ TÂcells. Cell Reports Methods, 2022, 2, 100224.	1.4	5

#	Article	IF	CITATIONS
19	SARS-CoV-2 Omicron variant escapes neutralizing antibodies and TÂcell responses more efficiently than other variants in mild COVID-19 convalescents. Cell Reports Medicine, 2022, 3, 100651.	3.3	24
20	Heterologous ChAdOx1/BNT162b2 vaccination induces stronger immune response than homologous ChAdOx1 vaccination: The pragmatic, multi-center, three-arm, partially randomized HEVACC trial. EBioMedicine, 2022, 80, 104073.	2.7	28
21	Humoral and cellular immune memory to four COVID-19 vaccines. Cell, 2022, 185, 2434-2451.e17.	13.5	289
22	Inactivated whole-virion vaccine BBV152/Covaxin elicits robust cellular immune memory to SARS-CoV-2 and variants of concern. Nature Microbiology, 2022, 7, 974-985.	5.9	30
23	SARS-CoV-2 Evolution and Immune Escape in Immunocompromised Patients. New England Journal of Medicine, 2022, 386, 2436-2438.	13.9	54
24	Interferon-Î ³ Release Assay for Accurate Detection of Severe Acute Respiratory Syndrome Coronavirus 2 T-Cell Response. Clinical Infectious Diseases, 2021, 73, e3130-e3132.	2.9	114
25	Baricitinib treatment resolves lower-airway macrophage inflammation and neutrophil recruitment in SARS-CoV-2-infected rhesus macaques. Cell, 2021, 184, 460-475.e21.	13.5	156
26	SARS-CoV-2 induces robust germinal center CD4 T follicular helper cell responses in rhesus macaques. Nature Communications, 2021, 12, 541.	5.8	66
27	Evaluation of the Expression of CCR5 and CX3CR1 Receptors and Correlation with the Functionality of T Cells in Women infected with ZIKV during Pregnancy. Viruses, 2021, 13, 191.	1.5	2
28	Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science, 2021, 371, .	6.0	2,268
29	Comprehensive analysis of TÂcell immunodominance and immunoprevalence of SARS-CoV-2 epitopes in COVID-19 cases. Cell Reports Medicine, 2021, 2, 100204.	3.3	437
30	Differential Longevity of Memory CD4 and CD8 T Cells in a Cohort of the Mothers With a History of ZIKV Infection and Their Children. Frontiers in Immunology, 2021, 12, 610456.	2.2	5
31	Immune Memory in Mild COVID-19 Patients and Unexposed Donors Reveals Persistent T Cell Responses After SARS-CoV-2 Infection. Frontiers in Immunology, 2021, 12, 636768.	2.2	41
32	T cell assays differentiate clinical and subclinical SARS-CoV-2 infections from cross-reactive antiviral responses. Nature Communications, 2021, 12, 2055.	5.8	102
33	Differential T-Cell Reactivity to Endemic Coronaviruses and SARS-CoV-2 in Community and Health Care Workers. Journal of Infectious Diseases, 2021, 224, 70-80.	1.9	65
34	Pre-existing T Cell Memory against Zika Virus. Journal of Virology, 2021, 95, .	1.5	11
35	Activation of mTORC1 at late endosomes misdirects T cell fate decision in older individuals. Science Immunology, 2021, 6, .	5.6	22
36	A yeast-expressed RBD-based SARS-CoV-2 vaccine formulated with 3M-052-alum adjuvant promotes protective efficacy in non-human primates. Science Immunology, 2021, 6, .	5.6	53

#	Article	IF	CITATIONS
37	SARS-CoV-2 human TÂcell epitopes: Adaptive immune response against COVID-19. Cell Host and Microbe, 2021, 29, 1076-1092.	5.1	242
38	Impact of SARS-CoV-2 variants on the total CD4+ and CD8+ TÂcell reactivity in infected or vaccinated individuals. Cell Reports Medicine, 2021, 2, 100355.	3.3	490
39	Evaluation of ELISA-Based Multiplex Peptides for the Detection of Human Serum Antibodies Induced by Zika Virus Infection across Various Countries. Viruses, 2021, 13, 1319.	1.5	2
40	Aging and CMV Infection Affect Pre-existing SARS-CoV-2-Reactive CD8+ T Cells in Unexposed Individuals. Frontiers in Aging, 2021, 2, .	1.2	16
41	Cellular and humoral immune responses following SARS-CoV-2 mRNA vaccination in patients with multiple sclerosis on anti-CD20 therapy. Nature Medicine, 2021, 27, 1990-2001.	15.2	396
42	Low-dose mRNA-1273 COVID-19 vaccine generates durable memory enhanced by cross-reactive T cells. Science, 2021, 374, eabj9853.	6.0	236
43	Rapid induction of antigen-specific CD4+ TÂcells is associated with coordinated humoral and cellular immunity to SARS-CoV-2 mRNA vaccination. Immunity, 2021, 54, 2133-2142.e3.	6.6	367
44	lmmune signatures underlying post-acute COVID-19 lung sequelae. Science Immunology, 2021, 6, eabk1741.	5.6	99
45	mRNA vaccines induce durable immune memory to SARS-CoV-2 and variants of concern. Science, 2021, 374, abm0829.	6.0	609
46	SARS-CoV-2 infection generates tissue-localized immunological memory in humans. Science Immunology, 2021, 6, eabl9105.	5.6	147
47	Prior infection with SARS-CoV-2 boosts and broadens Ad26.COV2.S immunogenicity in a variant-dependent manner. Cell Host and Microbe, 2021, 29, 1611-1619.e5.	5.1	106
48	Recognition of Variants of Concern by Antibodies and T Cells Induced by a SARS-CoV-2 Inactivated Vaccine. Frontiers in Immunology, 2021, 12, 747830.	2.2	69
49	Heterogeneity of human anti-viral immunity shaped by virus, tissue, age, and sex. Cell Reports, 2021, 37, 110071.	2.9	34
50	Adoptive Immune Responses to Sars-Cov2 Vaccination in CART19 Treated Patients. Blood, 2021, 138, 1757-1757.	0.6	3
51	Transcriptomic immune profiles of human flavivirusâ€specific Tâ€cell responses. Immunology, 2020, 160, 3-9.	2.0	18
52	A Single-Dose Intranasal ChAd Vaccine Protects Upper and Lower Respiratory Tracts against SARS-CoV-2. Cell, 2020, 183, 169-184.e13.	13.5	446
53	Antigen-Specific Adaptive Immunity to SARS-CoV-2 in Acute COVID-19 and Associations with Age and Disease Severity. Cell, 2020, 183, 996-1012.e19.	13.5	1,494
54	Imbalance of Regulatory and Cytotoxic SARS-CoV-2-Reactive CD4+ T Cells in COVID-19. Cell, 2020, 183, 1340-1353.e16.	13.5	431

#	Article	IF	CITATIONS
55	Identification of Novel Yellow Fever Class II Epitopes in YF-17D Vaccinees. Viruses, 2020, 12, 1300.	1.5	3
56	Conserved epitopes with high HLA-I population coverage are targets of CD8+ T cells associated with high IFN-Î ³ responses against all dengue virus serotypes. Scientific Reports, 2020, 10, 20497.	1.6	5
57	Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans. Science, 2020, 370, 89-94.	6.0	1,036
58	Identification and Characterization of CD4 ⁺ T Cell Epitopes after Shingrix Vaccination. Journal of Virology, 2020, 94, .	1.5	18
59	Case Report: Convalescent Plasma, a Targeted Therapy for Patients with CVID and Severe COVID-19. Frontiers in Immunology, 2020, 11, 596761.	2.2	45
60	The receptor-binding domain of the viral spike protein is an immunodominant and highly specific target of antibodies in SARS-CoV-2 patients. Science Immunology, 2020, 5, .	5.6	772
61	T Cell Responses Induced by Attenuated Flavivirus Vaccination Are Specific and Show Limited Cross-Reactivity with Other Flavivirus Species. Journal of Virology, 2020, 94, .	1.5	49
62	Safety and immunogenicity of the tetravalent, live-attenuated dengue vaccine Butantan-DV in adults in Brazil: a two-step, double-blind, randomised placebo-controlled phase 2 trial. Lancet Infectious Diseases, The, 2020, 20, 839-850.	4.6	50
63	Inhibition of protective immunity against <i>Staphylococcus aureus</i> infection by MHC-restricted immunodominance is overcome by vaccination. Science Advances, 2020, 6, eaaw7713.	4.7	13
64	Rapid Induction and Maintenance of Virus-Specific CD8+ TEMRA and CD4+ TEM Cells Following Protective Vaccination Against Dengue Virus Challenge in Humans. Frontiers in Immunology, 2020, 11, 479.	2.2	37
65	Two Is Better Than One: Evidence for T-Cell Cross-Protection Between Dengue and Zika and Implications on Vaccine Design. Frontiers in Immunology, 2020, 11, 517.	2.2	31
66	Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell, 2020, 181, 1489-1501.e15.	13.5	3,220
67	Phenotype and kinetics of SARS-CoV-2–specific T cells in COVID-19 patients with acute respiratory distress syndrome. Science Immunology, 2020, 5, .	5.6	851
68	Single-Cell Transcriptomic Analysis of SARS-CoV-2 Reactive CD4 ⁺ T Cells. SSRN Electronic Journal, 2020, , 3641939.	0.4	31
69	Laserklassifizierung und Laserklassen. , 2020, , 173-202.		0
70	Characterization of Magnitude and Antigen Specificity of HLA-DP, DQ, and DRB3/4/5 Restricted DENV-Specific CD4+ T Cell Responses. Frontiers in Immunology, 2019, 10, 1568.	2.2	35
71	ZikaPLAN: addressing the knowledge gaps and working towards a research preparedness network in the Americas. Global Health Action, 2019, 12, 1666566.	0.7	13
72	Human T Cell Response to Dengue Virus Infection. Frontiers in Immunology, 2019, 10, 2125.	2.2	102

5

#	Article	IF	CITATIONS
73	Time elapsed between Zika and dengue virus infections affects antibody and T cell responses. Nature Communications, 2019, 10, 4316.	5.8	31
74	Molecular Signatures of Dengue Virus-Specific IL-10/IFN-Î ³ Co-producing CD4ÂT Cells and Their Association with Dengue Disease. Cell Reports, 2019, 29, 4482-4495.e4.	2.9	35
75	Dengue-specific CD8+ T cell subsets display specialized transcriptomic and TCR profiles. Journal of Clinical Investigation, 2019, 129, 1727-1741.	3.9	41
76	Circulating T cell-monocyte complexes are markers of immune perturbations. ELife, 2019, 8, .	2.8	67
77	DAFi: A directed recursive data filtering and clustering approach for improving and interpreting data clustering identification of cell populations from polychromatic flow cytometry data. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2018, 93, 597-610.	1.1	18
78	Precursors of human CD4 ⁺ cytotoxic T lymphocytes identified by single-cell transcriptome analysis. Science Immunology, 2018, 3, .	5.6	209
79	Development of Envelope Protein Antigens To Serologically Differentiate Zika Virus Infection from Dengue Virus Infection. Journal of Clinical Microbiology, 2018, 56, .	1.8	53
80	Sequence-based HLA-A, B, C, DP, DQ, and DR typing of 714 adults from Colombo, Sri Lanka. Human Immunology, 2018, 79, 87-88.	1.2	7
81	Sequence-based HLA-A, B, C, DP, DQ, and DR typing of 339 adults from Managua, Nicaragua. Human Immunology, 2018, 79, 1-2.	1.2	8
82	Cutting Edge: Transcriptional Profiling Reveals Multifunctional and Cytotoxic Antiviral Responses of Zika Virus–Specific CD8+ T Cells. Journal of Immunology, 2018, 201, 3487-3491.	0.4	70
83	A Review on T Cell Epitopes Identified Using Prediction and Cell-Mediated Immune Models for Mycobacterium tuberculosis and Bordetella pertussis. Frontiers in Immunology, 2018, 9, 2778.	2.2	41
84	Sequence-based HLA-A, B, C, DP, DQ, and DR typing of 496 adults from San Diego, California, USA. Human Immunology, 2018, 79, 821-822.	1.2	10
85	Predicting HLA CD4 Immunogenicity in Human Populations. Frontiers in Immunology, 2018, 9, 1369.	2.2	101
86	Development of a novel clustering tool for linear peptide sequences. Immunology, 2018, 155, 331-345.	2.0	73
87	An Integrated Workflow To Assess Technical and Biological Variability of Cell Population Frequencies in Human Peripheral Blood by Flow Cytometry. Journal of Immunology, 2017, 198, 1748-1758.	0.4	69
88	Patterns of Cellular Immunity Associated with Experimental Infection with rDEN2Δ30 (Tonga/74) Support Its Suitability as a Human Dengue Virus Challenge Strain. Journal of Virology, 2017, 91, .	1.5	24
89	T cells from patients with Parkinson's disease recognize α-synuclein peptides. Nature, 2017, 546, 656-661.	13.7	618
90	Mapping the Human Memory B Cell and Serum Neutralizing Antibody Responses to Dengue Virus Serotype 4 Infection and Vaccination. Journal of Virology, 2017, 91, .	1.5	44

#	Article	IF	CITATIONS
91	Human CD4 ⁺ T Cell Responses to an Attenuated Tetravalent Dengue Vaccine Parallel Those Induced by Natural Infection in Magnitude, HLA Restriction, and Antigen Specificity. Journal of Virology, 2017, 91, .	1.5	83
92	Prior Dengue Virus Exposure Shapes T Cell Immunity to Zika Virus in Humans. Journal of Virology, 2017, 91, .	1.5	148
93	Unique phenotypes and clonal expansions of human CD4 effector memory T cells re-expressing CD45RA. Nature Communications, 2017, 8, 1473.	5.8	208
94	Global Assessment of Dengue Virus-Specific CD4+ T Cell Responses in Dengue-Endemic Areas. Frontiers in Immunology, 2017, 8, 1309.	2.2	77
95	Definition of Human Epitopes Recognized in Tetanus Toxoid and Development of an Assay Strategy to Detect Ex Vivo Tetanus CD4+ T Cell Responses. PLoS ONE, 2017, 12, e0169086.	1.1	60
96	Ontogeny of the B- and T-cell response in a primary Zika virus infection of a dengue-naÃ⁻ve individual during the 2016 outbreak in Miami, FL. PLoS Neglected Tropical Diseases, 2017, 11, e0006000.	1.3	48
97	Cytotoxic CD4 T Cells: Differentiation, Function, and Application to Dengue Virus Infection. Frontiers in Immunology, 2016, 7, 531.	2.2	74
98	Protective Role of Cross-Reactive CD8 T Cells Against Dengue Virus Infection. EBioMedicine, 2016, 13, 284-293.	2.7	85
99	HLA-DRB1 Alleles Are Associated With Different Magnitudes of Dengue Virus–Specific CD4 ⁺ T-Cell Responses. Journal of Infectious Diseases, 2016, 214, 1117-1124.	1.9	88
100	A Cytokine-Independent Approach To Identify Antigen-Specific Human Germinal Center T Follicular Helper Cells and Rare Antigen-Specific CD4+ T Cells in Blood. Journal of Immunology, 2016, 197, 983-993.	0.4	215
101	Immunodominant Dengue Virus-Specific CD8 ⁺ T Cell Responses Are Associated with a Memory PD-1 ⁺ Phenotype. Journal of Virology, 2016, 90, 4771-4779.	1.5	71
102	Cytomegalovirus-Specific CD4 T Cells Are Cytolytic and Mediate Vaccine Protection. Journal of Virology, 2016, 90, 650-658.	1.5	58
103	Identifying Candidate Targets of Immune Responses in Zika Virus Based on Homology to Epitopes in Other Flavivirus Species. PLOS Currents, 2016, 8, .	1.4	64
104	Automatic Generation of Validated Specific Epitope Sets. Journal of Immunology Research, 2015, 2015, 1-11.	0.9	90
105	Dengue virus infection elicits highly polarized CX3CR1 ⁺ cytotoxic CD4 ⁺ T cells associated with protective immunity. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4256-63.	3.3	266
106	Human CD8 ⁺ T-Cell Responses Against the 4 Dengue Virus Serotypes Are Associated With Distinct Patterns of Protein Targets. Journal of Infectious Diseases, 2015, 212, 1743-1751.	1.9	129
107	The Human CD8 ⁺ T Cell Responses Induced by a Live Attenuated Tetravalent Dengue Vaccine Are Directed against Highly Conserved Epitopes. Journal of Virology, 2015, 89, 120-128.	1.5	148
108	T-Cell Immunity to Infection with Dengue Virus in Humans. Frontiers in Immunology, 2014, 5, 93.	2.2	126

#	Article	IF	CITATIONS
109	Immunodominance Changes as a Function of the Infecting Dengue Virus Serotype and Primary versus Secondary Infection. Journal of Virology, 2014, 88, 11383-11394.	1.5	100
110	HLA Class I Alleles Are Associated with Peptide-Binding Repertoires of Different Size, Affinity, and Immunogenicity. Journal of Immunology, 2013, 191, 5831-5839.	0.4	249
111	Comprehensive analysis of dengue virus-specific responses supports an HLA-linked protective role for CD8 ⁺ T cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2046-53.	3.3	524
112	Properties of MHC Class I Presented Peptides That Enhance Immunogenicity. PLoS Computational Biology, 2013, 9, e1003266.	1.5	636
113	Evaluating the Immunogenicity of Protein Drugs by Applying <i>In Vitro</i> MHC Binding Data and the Immune Epitope Database and Analysis Resource. Clinical and Developmental Immunology, 2013, 2013, 1-7.	3.3	50
114	Insights into HLA-Restricted T Cell Responses in a Novel Mouse Model of Dengue Virus Infection Point toward New Implications for Vaccine Design. Journal of Immunology, 2011, 187, 4268-4279.	0.4	104
115	Molecular Determinants of T Cell Epitope Recognition to the Common Timothy Grass Allergen. Journal of Immunology, 2010, 185, 943-955.	0.4	163
116	'One Year Later' - SARS-CoV-2-Specific Immunity in Mild Cases of COVID-19. SSRN Electronic Journal, 0, , .	0.4	1
117	Molecular Signatures of Dengue Virus-Specific IL-10/IFN-γ Co-Producing CD4 T Cells and Their Association with Severe Dengue Disease. SSRN Electronic Journal, 0, , .	0.4	0
118	Ancestral SARS-CoV-2-specific T cells cross-recognize Omicron. Nature Medicine, 0, , .	15.2	14
119	Antigenic Determinants of SARS-CoV-2-Specific CD4+ T Cell Lines Reveals M Protein-Driven Dysregulation of Interferon Signaling. Frontiers in Immunology, 0, 13, .	2.2	2
120	Specific CD4+ T Cell Responses to Ancestral SARS-CoV-2 in Children Increase With Age and Show Cross-Reactivity to Beta Variant. Frontiers in Immunology, 0, 13, .	2.2	8