Marie-HélÃ"ne Tremblay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8602500/publications.pdf

Version: 2024-02-01

933447 839539 18 339 10 18 citations h-index g-index papers 18 18 18 710 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Tailoring capping-layer composition for improved stability of mixed-halide perovskites. Journal of Materials Chemistry A, 2022, 10, 2957-2965.	10.3	5
2	Hybrid Organic Lead Iodides: Role of Organic Cation Structure in Obtaining 1D Chains of Face-Sharing Octahedra vs 2D Perovskites. Chemistry of Materials, 2022, 34, 935-946.	6.7	7
3	A naphthalene diimide side-chain polymer as an electron-extraction layer for stable perovskite solar cells. Materials Chemistry Frontiers, 2021, 5, 450-457.	5.9	11
4	A polymeric bis(di- <i>p</i> -anisylamino)fluorene hole-transport material for stable n-i-p perovskite solar cells. New Journal of Chemistry, 2021, 45, 15017-15021.	2.8	3
5	Benzocyclobutene polymer as an additive for a benzocyclobutene-fullerene: application in stable p–i–n perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 9347-9353.	10.3	6
6	A photo-crosslinkable bis-triarylamine side-chain polymer as a hole-transport material for stable perovskite solar cells. Sustainable Energy and Fuels, 2020, 4, 190-198.	4.9	22
7	Naphthalenediimide Cations Inhibit 2D Perovskite Formation and Facilitate Subpicosecond Electron Transfer. Journal of Physical Chemistry C, 2020, 124, 24379-24390.	3.1	17
8	Structural Diversity in 2,2′-[Naphthalene-1,8:4,5-bis(dicarboximide)- <i>N,N</i> ′-diyl]-bis(ethylammonium) lodoplumbates. Inorganic Chemistry, 2020, 59, 8070-8080.	4.0	16
9	Exciton-band tuning induced by the width of the cation in 2D lead iodide perovskite hybrids. Materials Chemistry Frontiers, 2020, 4, 2023-2028.	5.9	12
10	Structures of (4-Y-C ₆ H ₄ CH ₂ NH ₃) ₂ Pbl ₄ {Y = H, F, Cl, Br, I}: Tuning of Hybrid Organic Inorganic Perovskite Structures from Ruddlesden–Popper to Dion–Jacobson Limits. Chemistry of Materials, 2019, 31, 6145-6153.	6.7	62
11	Understanding Color Tuning and Reversible Oxidation of Conjugated Azomethines. Journal of Physical Chemistry A, 2019, 123, 2687-2693.	2.5	6
12	(4NPEA) $<$ sub $>$ 2 $<$ /sub $>$ Pbl $<$ sub $>$ 4 $<$ /sub $>$ (4NPEA = 4-Nitrophenylethylammonium): Structural, NMR, and Optical Properties of a 3 \tilde{A} — 3 Corrugated 2D Hybrid Perovskite. Journal of the American Chemical Society, 2019, 141, 4521-4525.	13.7	37
13	Ambipolar azomethines as potential cathodic color switching materials. New Journal of Chemistry, 2017, 41, 2287-2295.	2.8	8
14	Investigation of Triphenylamine–Thiophene–Azomethine Derivatives: Toward Understanding Their Electrochromic Behavior. Journal of Physical Chemistry C, 2016, 120, 9081-9087.	3.1	16
15	Regio- and Stereoselective Hydrosilylation of Unsymmetrical Alkynes Catalyzed by a Well-Defined, Low-Valent Cobalt Catalyst. Organic Letters, 2016, 18, 4242-4245.	4.6	66
16	Hydrogenâ€Bond and Supramolecularâ€Contact Mediated Fluorescence Enhancement of Electrochromic Azomethines. Chemistry - A European Journal, 2016, 22, 11382-11393.	3.3	22
17	Photophysical, electrochemical, and spectroelectrochemical investigation of electronic <i>push–pull</i> benzothiadiazole fluorophores. Pure and Applied Chemistry, 2015, 87, 649-661.	1.9	19
18	Moderately Strong Phenols Dissociate by Forming an Ion-Pair Kinetic Intermediate. Journal of Physical Chemistry A, 2013, 117, 13976-13987.	2.5	4