
Srikantaswamy Shivanna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8602129/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of CeO2 nanoparticles on dielectric properties of PVB/CeO2 polymer nanodielectrics: a positron lifetime study. Journal of Materials Science: Materials in Electronics, 2022, 33, 1063-1077.	1.1	8
2	Fabrication of spherical porous pAg2O-nWO3/Ag/GNS heterostructure with enhanced photocatalytic activity through plasmonic S-scheme mechanism and its complementing biological interest. Chemosphere, 2022, 294, 133715.	4.2	2
3	Rational construction of plasmonic Z-scheme Ag-ZnO-CeO2 heterostructures for highly enhanced solar photocatalytic H2 evolution. Applied Surface Science, 2021, 541, 148457.	3.1	39
4	Hydrothermal synthesis of MoO3/ZnO heterostructure with highly enhanced photocatalysis and their environmental interest. Journal of Environmental Chemical Engineering, 2021, 9, 105040.	3.3	25
5	Hydrothermal synthesis of Gaâ,,Oâ,ƒ/TiO2 nanocomposites with highly enhanced solar photocatalysis and their biological interest. Journal of Photochemistry and Photobiology, 2021, 6, 100020.	1.1	8
6	Photo-catalytic dye degradation of methylene blue by using ZrO2/MWCNT nanocomposites. Water Practice and Technology, 2021, 16, 1265-1276.	1.0	2
7	Hydrothermal processing of interfacial BiCeO3/MWCNTs photocatalyst for rapid dye degradation and its biological interest. Journal of Environmental Chemical Engineering, 2021, 9, 105774.	3.3	13
8	Microwave hydrothermal synthesis of copper induced ZnO/gC3N4 heterostructure with efficient photocatalytic degradation through S-scheme mechanism. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 418, 113394.	2.0	18
9	Designing of Fe2O3/GO heterostructure with enhanced photocatalytic activity and biological applications. Nanotechnology for Environmental Engineering, 2021, 6, 1.	2.0	1
10	Synthesis of graphene nanosheets by emitted black carbon and its sustainable applications. Journal of Environmental Chemical Engineering, 2020, 8, 104071.	3.3	7
11	Hydrothermal synthesis, characterization and enhanced photocatalytic activity and toxicity studies of a rhombohedral Fe ₂ O ₃ nanomaterial. RSC Advances, 2019, 9, 25158-25169.	1.7	16
12	Synthesis of graphite oxide nanoparticles and conductivity studies of PSF/GO and PSAN/GO polymer nanocomposites. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2019, 246, 62-75.	1.7	16
13	Photocatalytic dye degradation and biological activities of the Fe ₂ O ₃ /Cu ₂ O nanocomposite. RSC Advances, 2019, 9, 8557-8568.	1.7	119
14	Dry-Coated Graphite onto Sandpaper for Triboelectric Nanogenerator as an Active Power Source for Portable Electronics. Nanomaterials, 2019, 9, 1585.	1.9	20
15	Comparative Study on the Effects of Surface Area, Conduction Band and Valence Band Positions on the Photocatalytic Activity of ZnO-M _x O _y Heterostructures, Journal of Water Resource and Protection, 2019, 11, 357-370.	0.3	17
16	Electronically semitransparent ZnO nanorods with superior electron transport ability for DSSCs and solar photocatalysis. Ceramics International, 2018, 44, 7202-7208.	2.3	33
17	Visible Light Assisted Photocatalytic Degradation of Chromium (VI) by Using Nanoporous Fe ₂ O ₃ . Journal of Materials, 2018, 2018, 1-13.	0.1	9
18	Synthesis, Characterization of Copper Metavanadate (CuV2O6) Nanostructures Via Hydrothermal Method and their Photocatalytic Performance. Oriental Journal of Chemistry, 2018, 34, 1263-1269.	0.1	2

#	Article	IF	CITATIONS
19	Ecofriendly Synthesis of Metal/Metal Oxide Nanoparticles and Their Application in Food Packaging and Food Preservation. , 2018, , 197-216.		11
20	The correlation among morphology, oxygen vacancies and properties of ZnO nanoflowers. Journal of Materials Science: Materials in Electronics, 2018, 29, 13551-13560.	1.1	19
21	Microwave treated sol–gel synthesis and characterization of hybrid ZnS–RGO composites for efficient photodegradation of dyes. New Journal of Chemistry, 2017, 41, 1723-1735.	1.4	49
22	Simultaneous removal of dye and heavy metals in a single step reaction using PVA/MWCNT composites. Analytical Methods, 2016, 8, 2408-2412.	1.3	19
23	Dispersion of Multiwall Carbon Nanotubes in Organic Solvents through Hydrothermal Supercritical Condition. Journal of Nanomaterials, 2015, 2015, 1-6.	1.5	21
24	Speciation of heavy metals in biosolids of wastewater treatment plants at Mysore, Karnataka, India. Environmental Monitoring and Assessment, 2012, 184, 239-249.	1.3	13
25	Environmental Flow Requirements in Tungabhadra River, Karnataka, India. Natural Resources Research, 2011, 20, 193-205.	2.2	3
26	Statistical Multivariate Analysis in the Assessment of River Water Quality in the Vicinity of KRS Dam, Karnataka, India. Natural Resources Research, 2009, 18, 235-247.	2.2	17
27	Stability of single-wall carbon nanotubes under hydrothermal conditions. Journal of Materials Research, 2002, 17, 734-737.	1.2	17
28	Evolution of single-wall carbon nanotubes during hydrothermal treatment. Solid State Ionics, 2002, 151, 205-211.	1.3	9
29	Phase and structural change of carbonized wood materials by hydrothermal treatment. Solid State Ionics, 2002, 151, 197-203.	1.3	16
30	Carbon nanocells and nanotubes grown in hydrothermal fluids. Chemical Physics Letters, 2000, 329, 317-322.	1.2	77
31	Recent progress in the growth and characterization of aluminum orthophosphate crystals. Progress in Crystal Growth and Characterization of Materials, 1991, 21, 199-254.	1.8	6
32	Hydrothermal synthesis and structure of TmP5O14. Journal of Materials Science Letters, 1990, 9, 235-236.	0.5	5
33	Hydrothermal synthesis and characterization of AlPO4:Nd crystals. Journal of the Less Common Metals, 1987, 127, 263-264.	0.9	0
34	lonic conductivity measurements for AIPO4:M1+(M1+ = Li, Na) crystals. Journal of Materials Science Letters, 1987, 6, 1053-1054.	0.5	3
35	Synthesis and characterization of new superionic conductors NaCu2ZrP3O12 and Na2(La, Fe)ZrP3O12. Solid State Ionics, 1987, 24, 1-6.	1.3	3
36	Conductivity pre-exponential factors for some new superionic conductors. Bulletin of Materials Science, 1987, 9, 317-321.	0.8	6

#	Article	IF	CITATIONS
37	Synthesis and characterization of a new polymorphic modification of AlPO4. Journal of Crystal Growth, 1986, 79, 232-235.	0.7	16
38	Influence of admixtures on the crystallization and morphology of AlPO4 crystals. Journal of Materials Science, 1986, 21, 2202-2206.	1.7	16
39	Infrared spectra of aluminium orthophosphate crystals. Journal of Materials Science Letters, 1986, 5, 203-205.	0.5	15
40	X-ray data for AIPO4 crystals. Journal of Materials Science Letters, 1986, 5, 495-495.	0.5	3
41	New polymorphic modification of aluminium orthophosphate. Journal of Materials Science Letters, 1986, 5, 690-692.	0.5	6
42	Crystal data for NaNi2ZrP3O12 and Na2(La, Al)TiP3O12. Journal of Materials Science Letters, 1986, 5, 701-702.	0.5	1
43	Crystal data for NaMn2ZrP3O12, Na2(Ce, Co)ZrP3O12 and Na2(La, Co)TiP3O12. Journal of Materials Science Letters, 1986, 5, 1081-1082.	0.5	0
44	Crystal data for Na2LaZrP3O12 and Na2(R, Me)ZrP3O12 crystals. Journal of Materials Science Letters, 1986, 5, 1104-1106.	0.5	0
45	High-temperature X-ray diffraction studies of berlinite crystals. Journal of Materials Science Letters, 1986, 5, 1189-1190.	0.5	2
46	Influence of admixtures on theα—β berlinite transition. Journal of Materials Science Letters, 1986, 5, 347-348.	0.5	7