
Lucilla Iacumin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8602079/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Aging on lees. , 2022, , 247-267.		0
2	Zygosaccharomyces rouxii is the predominant species responsible for the spoilage of the mix base for ice cream and ethanol is the best inhibitor tested. Food Microbiology, 2022, 102, 103929.	2.1	3
3	Antibiotic resistance and virulence factors in lactobacilli: something to carefully consider. Food Microbiology, 2022, 103, 103934.	2.1	34
4	Evaluation of Different Techniques, including Modified Atmosphere, under Vacuum Packaging, Washing, and Latilactobacillus sakei as a Bioprotective Agent, to Increase the Shelf-Life of Fresh Gutted Sea Bass (Dicentrarchus labrax) and Sea Bream (Sparus aurata) Stored at 6 ± 2 °C. Biology, 2022, 11, 217.	1.3	7
5	Machine learning-assisted environmental surveillance of Legionella: A retrospective observational study in Friuli-Venezia Giulia region of Italy in the period 2002–2019. Informatics in Medicine Unlocked, 2022, 28, 100803.	1.9	4
6	A survey of a blown pack spoilage produced by Clostridium perfringens in vacuum–packaged wurstel. Food Microbiology, 2021, 94, 103654.	2.1	3
7	Analysis of the Bioprotective Potential of Different Lactic Acid Bacteria Against Listeria monocytogenes in Cold-Smoked Sea Bass, a New Product Packaged Under Vacuum and Stored at 6 ± 2 Frontiers in Microbiology, 2021, 12, 796655.	°.€.	9
8	Emulsion PCR (ePCR) as a Tool to Improve the Power of DGGE Analysis for Microbial Population Studies. Microorganisms, 2020, 8, 1099.	1.6	4
9	Effect of a Debaryomyces hansenii and Lactobacillus buchneri Starter Culture on Aspergillus westerdijkiae Ochratoxin A Production and Growth during the Manufacture of Short Seasoned Dry-Cured Ham. Microorganisms, 2020, 8, 1623.	1.6	14
10	Listeria monocytogenes Survey in Cubed Cooked Ham Packaged in Modified Atmosphere and Bioprotective Effect of Selected Lactic Acid Bacteria. Microorganisms, 2020, 8, 898.	1.6	16
11	Lactic Acid Bacteria: Variability Due to Different Pork Breeds, Breeding Systems and Fermented Sausage Production Technology. Foods, 2020, 9, 338.	1.9	10
12	Microbial, chemico-physical and volatile aromatic compounds characterization of Pitina PGI, a peculiar sausage-like product of North East Italy. Meat Science, 2020, 163, 108081.	2.7	26
13	Interplay between Neuroendocrine Biomarkers and Gut Microbiota in Dogs Supplemented with Grape Proanthocyanidins: Results of Dietary Intervention Study. Animals, 2020, 10, 531.	1.0	15
14	Valorization of cheese whey using microbial fermentations. Applied Microbiology and Biotechnology, 2020, 104, 2749-2764.	1.7	97
15	Activity evaluation of pure and doped zinc oxide nanoparticles against bacterial pathogens and <i>Saccharomyces cerevisiae</i> . Journal of Applied Microbiology, 2019, 127, 1391-1402.	1.4	21
16	Environmental surveillance and spatio-temporal analysis of Legionella spp. in a region of northeastern Italy (2002â \in "2017). PLoS ONE, 2019, 14, e0218687.	1.1	12
17	Natural levels of nitrites and nitrates in San Daniele dry cured ham PDO, and in meat, salt and sugna used for its production. Food Control, 2019, 100, 257-261.	2.8	25
18	Prospects for the Use of Whey for Polyhydroxyalkanoate (PHA) Production. Frontiers in Microbiology, 2019, 10, 992.	1.5	101

#	Article	IF	CITATIONS
19	Microbial quality of raw and ready-to-eat mung bean sprouts produced in Italy. Food Microbiology, 2019, 82, 371-377.	2.1	18
20	Sous vide cook-chill mussel (Mytilus galloprovincialis): evaluation of chemical, microbiological and sensory quality during chilled storage (3 ŰC). LWT - Food Science and Technology, 2018, 91, 117-124.	2.5	38
21	Application of multi-pass high pressure homogenization under variable temperature regimes to induce autolysis of wine yeasts. Food Chemistry, 2017, 224, 105-113.	4.2	21
22	Fate of the microbial population and the physico-chemical parameters of "Sanganel―a typical blood sausages of the Friuli, a north-east region of Italy. Food Microbiology, 2017, 63, 84-91.	2.1	14
23	Biocontrol of ochratoxigenic moulds (Aspergillus ochraceus and Penicillium nordicum) by Debaryomyces hansenii and Saccharomycopsis fibuligera during speck production. Food Microbiology, 2017, 62, 188-195.	2.1	38
24	Title is missing!. Turkish Journal of Fisheries and Aquatic Sciences, 2017, 17, .	0.4	5
25	Development and application of DNA molecular probes. AIMS Bioengineering, 2017, 4, 113-132.	0.6	4
26	Phage Inactivation of Listeria monocytogenes on San Daniele Dry-Cured Ham and Elimination of Biofilms from Equipment and Working Environments. Microorganisms, 2016, 4, 4.	1.6	51
27	A new cause of spoilage in goose sausages. Food Microbiology, 2016, 58, 56-62.	2.1	14
28	Lactococcus lactis and Lactobacillus sakei as bio-protective culture to eliminate Leuconostoc mesenteroides spoilage and improve the shelf life and sensorial characteristics of commercial cooked bacon. Food Microbiology, 2016, 58, 16-22.	2.1	51
29	Theoretical insight into the heat shock response (HSR) regulation in Lactobacillus casei and L. rhamnosus. Journal of Theoretical Biology, 2016, 402, 21-37.	0.8	19
30	Effect of indigenous Lactobacillus rhamnosus isolated from bovine milk on microbiological characteristics and aromatic profile of traditional yogurt. LWT - Food Science and Technology, 2016, 66, 158-164.	2.5	30
31	Survey of antibiotic resistance traits in strains of Lactobacillus casei/paracasei/rhamnosus. Annals of Microbiology, 2015, 65, 1763-1769.	1.1	4
32	Use of bio-protective cultures to improve the shelf-life and the sensorial characteristics of commercial hamburgers. LWT - Food Science and Technology, 2015, 62, 1198-1202.	2.5	25
33	Potential of high pressure homogenization to induce autolysis of wine yeasts. Food Chemistry, 2015, 185, 340-348.	4.2	31
34	OLED-based DNA biochip for Campylobacter spp. detection in poultry meat samples. Biosensors and Bioelectronics, 2015, 66, 271-276.	5.3	34
35	Seasonal changes in technological and nutritional quality of Mytilus galloprovincialis from suspended culture in the Gulf of Trieste (North Adriatic Sea). Food Chemistry, 2015, 173, 355-362.	4.2	43
36	Tolerance of Lactobacillus casei, Lactobacillus paracasei and Lactobacillus rhamnosus strains to stress factors encountered in food processing and in the gastro-intestinal tract. LWT - Food Science and Technology, 2015, 60, 721-728.	2.5	73

#	Article	IF	CITATIONS
37	High resolution melting analysis (HRM) as a new tool for the identification of species belonging to the Lactobacillus casei group andÂcomparison with species-specific PCRs and multiplex PCR. Food Microbiology, 2015, 46, 357-367.	2.1	56
38	Assessment of Aerobic and Respiratory Growth in the Lactobacillus casei Group. PLoS ONE, 2014, 9, e99189.	1.1	65
39	New Cause of Spoilage in <scp>S</scp> an <scp>D</scp> aniele Dry Cured Ham. Journal of Food Safety, 2014, 34, 263-269.	1.1	8
40	Use of ozone in production chain of high moisture Mozzarella cheese. LWT - Food Science and Technology, 2014, 55, 513-520.	2.5	40
41	A case of spoilage in wurstel sold in an Italian supermarket. Food Control, 2014, 43, 245-250.	2.8	8
42	PorA specific primers for the identification of Campylobacter species in food and clinical samples. LWT - Food Science and Technology, 2014, 58, 86-92.	2.5	3
43	Rapid detection and differentiation of important Campylobacter spp. in poultry samples by dot blot and PCR. Food Microbiology, 2014, 43, 28-34.	2.1	18
44	Use of propidium monoazide for the enumeration of viable Brettanomyces bruxellensis in wine and beer by quantitative PCR. Food Microbiology, 2014, 42, 196-204.	2.1	23
45	Effect of TiO2 photocatalytic activity in a HDPE-based food packaging on the structural and microbiological stability of a short-ripened cheese. Food Chemistry, 2013, 138, 1633-1640.	4.2	84
46	Dot blot and PCR for Brettanomyces bruxellensis detection in red wine. Food Control, 2013, 34, 40-46.	2.8	12
47	Use of propidium monoazide for the enumeration of viable Oenococcus oeni in must and wine by quantitative PCR. Food Microbiology, 2013, 35, 49-57.	2.1	21
48	Study of Oenococcus oeni gene expression to improve the quality of wines. Current Opinion in Biotechnology, 2013, 24, S23.	3.3	0
49	Ecology of moulds during the pre-ripening and ripening of San Daniele dry cured ham. Food Research International, 2013, 54, 1113-1119.	2.9	44
50	Microbial spoilage of traditional dry sausages produced in small-scale facilities in Friuli, a north-eastern region of Italy. Acta Alimentaria, 2013, 42, 390-399.	0.3	6
51	Evaluation of different methods to prevent Penicillium nordicum growth on and ochratoxin A production in country-style sausages. World Mycotoxin Journal, 2013, 6, 411-418.	0.8	14
52	Influence of specific fermentation conditions on natural microflora of pomace in "Grappa― production. World Journal of Microbiology and Biotechnology, 2012, 28, 1747-1759.	1.7	12
53	Identification and process origin of bacteria responsible for cavities and volatile offâ€flavour compounds in artisan cooked ham. International Journal of Food Science and Technology, 2012, 47, 114-121.	1.3	31
54	Prevention of Aspergillus ochraceus growth on and Ochratoxin a contamination of sausages using ozonated air. Food Microbiology, 2012, 29, 229-232.	2.1	15

#	Article	IF	CITATIONS
55	Catalase-positive cocci in fermented sausage: Variability due to different pork breeds, breeding systems and sausage production technology. Food Microbiology, 2012, 29, 178-186.	2.1	30
56	ldentification of the unculturable bacteria Candidatus arthromitus in the intestinal content of trouts using Dot blot and Southern blot techniques. Veterinary Microbiology, 2012, 156, 389-394.	0.8	16
5 7	Utilization of Denaturing Gradient Gel Electrophoresis (DGGE) to evaluate the Intestinal Microbiota of Brown Trout Salmo trutta fario. Journal of Veterinary Science & Medical Diagnosis, 2012, 01, .	0.0	6
58	OCHRATOXIGENIC MOLD AND OCHRATOXIN A IN FERMENTED SAUSAGES FROM DIFFERENT AREAS IN NORTHERN ITALY: OCCURRENCE, REDUCTION OR PREVENTION WITH OZONATED AIR. Journal of Food Safety, 2011, 31, 538-545.	1.1	46
59	Craft Beer Microflora Identification Before and After a Cleaning Process. Journal of the Institute of Brewing, 2011, 117, 343-351.	0.8	23
60	Use of Lactococcus lactis to improve the quality of cooked meat product. Current Opinion in Biotechnology, 2011, 22, S100.	3.3	0
61	Diversity and oenological characterization of indigenous Saccharomyces cerevisiae associated with Žilavka grapes. World Journal of Microbiology and Biotechnology, 2010, 26, 1483-1489.	1.7	26
62	Nested PCR for the detection of Candidatus arthromitus in fish. FEMS Microbiology Letters, 2010, 308, 35-39.	0.7	7
63	Nested PCR for the detection of Candidatus arthromitus in fish. FEMS Microbiology Letters, 2010, 310, 96-96.	0.7	0
64	A comparative study of the wine fermentation performance of Saccharomyces paradoxus under different nitrogen concentrations and glucose/fructose ratios. Journal of Applied Microbiology, 2010, 108, 73-80.	1.4	29
65	MICROBIOLOGICAL INVESTIGATION ON MOZZARELLA CHEESE SAMPLES NEAR THEIR EXPIRY DATE. Italian Journal of Food Safety, 2010, 1, 79.	0.5	0
66	Molecular Methods to Detect Bacillus cereus and Bacillus thuringiensis in Foods. NATO Science for Peace and Security Series A: Chemistry and Biology, 2010, , 185-210.	0.5	1
67	Control of Listeria monocytogenes in San Daniele Dry Cured Ham by Different Technologies: Reduction of L. Monocytogenes in Dry Cured Ham. NATO Science for Peace and Security Series A: Chemistry and Biology, 2010, , 211-235.	0.5	0
68	Moulds and ochratoxin A on surfaces of artisanal and industrial dry sausages. Food Microbiology, 2009, 26, 65-70.	2.1	146
69	Description of the microflora of sourdoughs by culture-dependent and culture-independent methods. Food Microbiology, 2009, 26, 128-135.	2.1	124
70	Molecular methods to evaluate biodiversity in Bacillus cereus and Bacillus thuringiensis strains from different origins. Food Microbiology, 2009, 26, 259-264.	2.1	22
71	Irradiation Treatments to Improve the Shelf Life of Fresh Black Truffles (Truffles Preservation by) Tj ETQq1 1 0.78	34314 rgB⊺ 1.5	[Qyerlock 10
72	Molecular methods forBacillus cereusandBacillus thuringiensisfrom humans, pesticides and foods, differentiation. Acta Alimentaria, 2009, 38, 87-95.	0.3	5

#	Article	IF	CITATIONS
73	Workable methods for risks control in the food chain production Italian Journal of Agronomy, 2008, 3, 167.	0.4	1
74	EFFECT OF ESSENTIAL OIL ON BIOFILM PRODUCTION BY DIFFERENT LISTERIA MONOCYTOGENES STRAINS. Italian Journal of Food Safety, 2008, 1, 11.	0.5	0
75	Preliminary Analysis of the Lipase Gene (gehM) Expression of Staphylococcus xylosus In Vitro and during Fermentation of Naturally Fermented Sausages (In Situ). Journal of Food Protection, 2007, 70, 2665-2669.	0.8	5
76	Influence of indigenous Saccharomyces paradoxus strains on Chardonnay wine fermentation aroma. International Journal of Food Science and Technology, 2007, 42, 95-101.	1.3	45
77	Molecular and technological characterization of Staphylococcus xylosus isolated from naturally fermented Italian sausages by RAPD, Rep-PCR and Sau-PCR analysis. Meat Science, 2006, 74, 281-288.	2.7	54
78	Ecology and dynamics of coagulase-negative cocci isolated from naturally fermented Italian sausages. Systematic and Applied Microbiology, 2006, 29, 480-486.	1.2	74
79	PCR-TTGE and RAPD-PCR Techniques to Analyze <i>Saccharomyces cerevisiae</i> and <i>Saccharomyces carlsbergensis</i> Isolated from Craft Beers. Journal of the Institute of Brewing, 2006, 112, 340-345.	0.8	15
80	Ecology and characterization by molecular methods of Staphylococcus species isolated from fresh sausages. International Journal of Food Microbiology, 2005, 97, 277-284.	2.1	57
81	A PCR-TGGE (Temperature Gradient Gel Electrophoresis) technique to assess differentiation among enological Saccharomyces cerevisiae strains. International Journal of Food Microbiology, 2005, 101, 333-339.	2.1	30
82	Culture-Dependent and -Independent Methods To Investigate the Microbial Ecology of Italian Fermented Sausages. Applied and Environmental Microbiology, 2005, 71, 1977-1986.	1.4	214
83	Characterisation of naturally fermented sausages produced in the North East of Italy. Meat Science, 2005, 69, 381-392.	2.7	195
84	Molecular methods for the differentiation of species used in production of cod-fish can detect commercial frauds. Food Control, 2005, 16, 37-42.	2.8	54
85	Molecular Detection and Identification of Brettanomyces/Dekkera bruxellensis and Brettanomyces/Dekkera anomalus in Spoiled Wines. Applied and Environmental Microbiology, 2004, 70, 1347-1355.	1.4	99
86	Moulds isolated from Istrian dried ham at the pre-ripening and ripening level. International Journal of Food Microbiology, 2004, 96, 29-34.	2.1	75
87	Study of the Ecology of Fresh Sausages and Characterization of Populations of Lactic Acid Bacteria by Molecular Methods. Applied and Environmental Microbiology, 2004, 70, 1883-1894.	1.4	146
88	A molecular method to detect Bacillus cereus from a coffee concentrate sample used in industrial preparations. Journal of Applied Microbiology, 2003, 95, 1361-1366.	1.4	22
89	Direct Identification in Food Samples of Listeria spp. and Listeria monocytogenes by Molecular Methods. Applied and Environmental Microbiology, 2002, 68, 6273-6282.	1.4	104
90	Draft Genome Sequences of Eight Bacilli Isolated from an Ancient Roman Amphora. Microbiology Resource Announcements, 0, , .	0.3	1