Catarina A CustÃ3dio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8602028/publications.pdf

Version: 2024-02-01

40 papers 1,567 citations

346980 22 h-index 355658 38 g-index

40 all docs

40 docs citations

times ranked

40

2694 citing authors

#	Article	IF	Citations
1	Self-glucose feeding hydrogels by enzyme empowered degradation for 3D cell culture. Materials Horizons, 2022, 9, 694-707.	6.4	10
2	Designing highly customizable human based platforms for cell culture using proteins from the amniotic membrane. Materials Science and Engineering C, 2022, 134, 112574.	3.8	8
3	Core–shell microcapsules: biofabrication and potential applications in tissue engineering and regenerative medicine. Biomaterials Science, 2022, 10, 2122-2153.	2.6	11
4	Human Proteinâ€Based Porous Scaffolds as Platforms for Xenoâ€Free 3D Cell Culture. Advanced Healthcare Materials, 2022, 11, e2102383.	3.9	11
5	High-Throughput Production of Microsponges from Platelet Lysate for Tissue Engineering Applications. Tissue Engineering - Part C: Methods, 2022, 28, 325-334.	1.1	3
6	Bioengineering a humanized 3D tri-culture osteosarcoma model to assess tumor invasiveness and therapy response. Acta Biomaterialia, 2021, 134, 204-214.	4.1	22
7	Platelet lysates-based hydrogels incorporating bioactive mesoporous silica nanoparticles for stem cell osteogenic differentiation. Materials Today Bio, 2021, 9, 100096.	2.6	19
8	Biomedical applications of laminarin. Carbohydrate Polymers, 2020, 232, 115774.	5.1	103
9	Modeling of Cell-Mediated Self-Assembled Colloidal Scaffolds. ACS Applied Materials & Samp; Interfaces, 2020, 12, 48321-48328.	4.0	10
10	Perinatal tissues and cells in tissue engineering and regenerative medicine. Acta Biomaterialia, 2020, 110, 1-14.	4.1	39
11	Human Platelet Lysatesâ€Based Hydrogels: A Novel Personalized 3D Platform for Spheroid Invasion Assessment. Advanced Science, 2020, 7, 1902398.	5.6	31
12	Smart Instructive Polymer Substrates for Tissue Engineering. , 2019, , 411-438.		7
13	Threeâ€Dimensional Osteosarcoma Models for Advancing Drug Discovery and Development. Advanced Therapeutics, 2019, 2, 1800108.	1.6	16
14	Photopolymerizable Platelet Lysate Hydrogels for Customizable 3D Cell Culture Platforms. Advanced Healthcare Materials, 2018, 7, e1800849.	3.9	38
15	Multifunctional laminarin microparticles for cell adhesion and expansion. Carbohydrate Polymers, 2018, 202, 91-98.	5.1	25
16	Multilayered membranes with tuned well arrays to be used as regenerative patches. Acta Biomaterialia, 2017, 57, 313-323.	4.1	17
17	Cell Surface Engineering to Control Cellular Interactions. ChemNanoMat, 2016, 2, 376-384.	1.5	65
18	Autonomous osteogenic differentiation of hASCs encapsulated in methacrylated gellan-gum hydrogels. Acta Biomaterialia, 2016, 41, 119-132.	4.1	47

#	Article	IF	CITATIONS
19	Multilayered Hollow Tubes as Blood Vessel Substitutes. ACS Biomaterials Science and Engineering, 2016, 2, 2304-2314.	2.6	19
20	Light responsive multilayer surfaces with controlled spatial extinction capability. Journal of Materials Chemistry B, 2016, 4, 1398-1404.	2.9	9
21	Photo-Cross-Linked Laminarin-Based Hydrogels for Biomedical Applications. Biomacromolecules, 2016, 17, 1602-1609.	2.6	63
22	Cell selective chitosan microparticles as injectable cell carriers for tissue regeneration. Biomaterials, 2015, 43, 23-31.	5.7	67
23	Nanostructured Hollow Tubes Based on Chitosan and Alginate Multilayers. Advanced Healthcare Materials, 2014, 3, 433-440.	3.9	48
24	Functionalized Microparticles Producing Scaffolds in Combination with Cells. Advanced Functional Materials, 2014, 24, 1391-1400.	7.8	39
25	Photopatterned Antibodies for Selective Cell Attachment. Langmuir, 2014, 30, 10066-10071.	1.6	27
26	Smart instructive polymer substrates for tissue engineering. , 2014, , 301-326.		4
27	Engineering Biomolecular Microenvironments for Cell Instructive Biomaterials. Advanced Healthcare Materials, 2014, 3, 797-810.	3.9	71
28	Biomimetic Miniaturized Platform Able to Sustain Arrays of Liquid Droplets for Highâ€Throughput Combinatorial Tests. Advanced Functional Materials, 2014, 24, 5096-5103.	7.8	58
29	Polymer Particles: Biomimetic Methodology to Produce Polymeric Multilayered Particles for Biotechnological and Biomedical Applications (Small 15/2013). Small, 2013, 9, 2486-2486.	5.2	2
30	Biomimetic Methodology to Produce Polymeric Multilayered Particles for Biotechnological and Biomedical Applications. Small, 2013, 9, 2487-2492.	5.2	46
31	Nanostructured and thermoresponsive recombinant biopolymer-based microcapsules for the delivery of active molecules. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 895-902.	1.7	37
32	Selective Cell Recruitment and Spatially Controlled Cell Attachment on Instructive Chitosan Surfaces Functionalized with Antibodies. Biointerphases, 2012, 7, 65.	0.6	18
33	High-throughput evaluation of interactions between biomaterials, proteins and cells using patterned superhydrophobic substrates. Soft Matter, 2011, 7, 4147.	1.2	99
34	Layerâ€by‣ayer Assembly of Chitosan and Recombinant Biopolymers into Biomimetic Coatings with Multiple Stimuliâ€Responsive Properties. Small, 2011, 7, 2640-2649.	5.2	97
35	Layerâ€By‣ayer Technique for Producing Porous Nanostructured 3D Constructs Using Moldable Freeform Assembly of Spherical Templates. Small, 2010, 6, 2644-2648.	5.2	52
36	Layer-by-layer assembly: Layer-By-Layer Technique for Producing Porous Nanostructured 3D Constructs Using Moldable Freeform Assembly of Spherical Templates (Small 23/2010). Small, 2010, 6, 2643-2643.	5.2	2

#	Article	IF	CITATIONS
37	Immobilization of fibronectin in chitosan substrates improves cell adhesion and proliferation. Journal of Tissue Engineering and Regenerative Medicine, 2010, 4, 316-323.	1.3	69
38	Stimuliâ€Responsive Thin Coatings Using Elastinâ€Like Polymers for Biomedical Applications. Advanced Functional Materials, 2009, 19, 3210-3218.	7.8	83
39	Bioinspired Degradable Substrates with Extreme Wettability Properties. Advanced Materials, 2009, 21, 1830-1834.	11.1	174
40	Superhydrophobic Coatings: Bioinspired Degradable Substrates with Extreme Wettability Properties (Adv. Mater. 18/2009). Advanced Materials, 2009, 21, NA-NA.	11.1	1