Zhimou Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8602021/publications.pdf Version: 2024-02-01

		16411	19690
208	15,415	64	117
papers	citations	h-index	g-index
221	221	221	11331
all docs	docs citations	times ranked	citing authors

ΖΗΙΜΟΠ ΥΛΝΟ

#	Article	IF	CITATIONS
1	Enzymatic Hydrogelation of Small Molecules. Accounts of Chemical Research, 2008, 41, 315-326.	7.6	615
2	Enzymatic Formation of Supramolecular Hydrogels. Advanced Materials, 2004, 16, 1440-1444.	11.1	554
3	Heterodimers of Nanoparticles:Â Formation at a Liquidâ °Liquid Interface and Particle-Specific Surface Modification by Functional Molecules. Journal of the American Chemical Society, 2005, 127, 34-35.	6.6	532
4	Using a Kinase/Phosphatase Switch to Regulate a Supramolecular Hydrogel and Forming the Supramolecular Hydrogel in Vivo. Journal of the American Chemical Society, 2006, 128, 3038-3043.	6.6	452
5	Supramolecular Hydrogels Respond to Ligandâ ``Receptor Interaction. Journal of the American Chemical Society, 2003, 125, 13680-13681.	6.6	434
6	A Supramolecular-Hydrogel-Encapsulated Hemin as an Artificial Enzyme to Mimic Peroxidase. Angewandte Chemie - International Edition, 2007, 46, 4285-4289.	7.2	369
7	Endothelialization and patency of RGD-functionalized vascular grafts in a rabbit carotid artery model. Biomaterials, 2012, 33, 2880-2891.	5.7	265
8	Intracellular Enzymatic Formation of Nanofibers Results in Hydrogelation and Regulated Cell Death. Advanced Materials, 2007, 19, 3152-3156.	11.1	259
9	Supramolecular Hydrogel of a <scp>d</scp> -Amino Acid Dipeptide for Controlled Drug Release in Vivo. Langmuir, 2009, 25, 8419-8422.	1.6	257
10	Integrating Enzymatic Self-Assembly and Mitochondria Targeting for Selectively Killing Cancer Cells without Acquired Drug Resistance. Journal of the American Chemical Society, 2016, 138, 16046-16055.	6.6	254
11	Supramolecular "Trojan Horse―for Nuclear Delivery of Dual Anticancer Drugs. Journal of the American Chemical Society, 2017, 139, 2876-2879.	6.6	253
12	Dephosphorylation of <scp>d</scp> -Peptide Derivatives to Form Biofunctional, Supramolecular Nanofibers/Hydrogels and Their Potential Applications for Intracellular Imaging and Intratumoral Chemotherapy. Journal of the American Chemical Society, 2013, 135, 9907-9914.	6.6	226
13	A Biocompatible Method of Decorporation:Â Bisphosphonate-Modified Magnetite Nanoparticles to Remove Uranyl Ions from Blood. Journal of the American Chemical Society, 2006, 128, 13358-13359.	6.6	224
14	A simple visual assay based on small molecule hydrogels for detecting inhibitors of enzymes. Chemical Communications, 2004, , 2424.	2.2	215
15	Intracellular Hydrogelation of Small Molecules Inhibits Bacterial Growth. Angewandte Chemie - International Edition, 2007, 46, 8216-8219.	7.2	212
16	Small molecule hydrogels based on a class of antiinflammatory agents. Chemical Communications, 2004, , 208.	2.2	211
17	d-Glucosamine-based supramolecular hydrogels to improve wound healing. Chemical Communications, 2007, , 843-845.	2.2	208
18	Using β-Lactamase to Trigger Supramolecular Hydrogelation. Journal of the American Chemical Society, 2007, 129, 266-267.	6.6	203

#	Article	IF	CITATIONS
19	Tandem Molecular Selfâ€Assembly in Liver Cancer Cells. Angewandte Chemie - International Edition, 2018, 57, 1813-1816.	7.2	199
20	A Powerful CD8 ⁺ Tâ€Cell Stimulating Dâ€Tetraâ€Peptide Hydrogel as a Very Promising Vaccine Adjuvant. Advanced Materials, 2017, 29, 1601776.	11.1	198
21	Enzymeâ€Instructed Selfâ€Assembly (EISA) and Hydrogelation of Peptides. Advanced Materials, 2020, 32, e1805798.	11.1	193
22	Conjugates of naphthalene and dipeptides produce molecular hydrogelators with high efficiency of hydrogelation and superhelical nanofibers. Journal of Materials Chemistry, 2007, 17, 850-854.	6.7	192
23	Supramolecular hydrogels based on biofunctional nanofibers of self-assembled small molecules. Journal of Materials Chemistry, 2007, 17, 2385.	6.7	179
24	Self-assembling small molecules for the detection of important analytes. Chemical Society Reviews, 2014, 43, 7257-7266.	18.7	175
25	Synthesis and cellular uptake of porphyrin decorated iron oxide nanoparticles—a potential candidate for bimodal anticancer therapy. Chemical Communications, 2005, , 4270.	2.2	172
26	Enzyme Promotes the Hydrogelation from a Hydrophobic Small Molecule. Journal of the American Chemical Society, 2009, 131, 11286-11287.	6.6	170
27	γâ€Rayâ€Responsive Supramolecular Hydrogel Based on a Diselenideâ€Containing Polymer and a Peptide. Angewandte Chemie - International Edition, 2013, 52, 6233-6237.	7.2	170
28	Enzyme atalyzed Formation of Supramolecular Hydrogels as Promising Vaccine Adjuvants. Advanced Functional Materials, 2016, 26, 1822-1829.	7.8	163
29	Molecular Recognition Remolds the Self-Assembly of Hydrogelators and Increases the Elasticity of the Hydrogel by 106-Fold. Journal of the American Chemical Society, 2004, 126, 15028-15029.	6.6	162
30	The inhibition of tumor growth and metastasis by self-assembled nanofibers of taxol. Biomaterials, 2012, 33, 5848-5853.	5.7	162
31	Enzymeâ€Instructed Intracellular Molecular Selfâ€Assembly to Boost Activity of Cisplatin against Drugâ€Resistant Ovarian Cancer Cells. Angewandte Chemie - International Edition, 2015, 54, 13307-13311.	7.2	158
32	A Peptide-Based Nanofibrous Hydrogel as a Promising DNA Nanovector for Optimizing the Efficacy of HIV Vaccine. Nano Letters, 2014, 14, 1439-1445.	4.5	157
33	Self-assembly of small molecules affords multifunctional supramolecular hydrogels for topically treating simulated uranium wounds. Chemical Communications, 2005, , 4414.	2.2	154
34	Inâ€Vitro and Inâ€Vivo Enzymatic Formation of Supramolecular Hydrogels Based on Self-Assembled Nanofibers of a β-Amino Acid Derivative. Small, 2007, 3, 558-562.	5.2	144
35	Precise and Long-Term Tracking of Adipose-Derived Stem Cells and Their Regenerative Capacity <i>via</i> Superb Bright and Stable Organic Nanodots. ACS Nano, 2014, 8, 12620-12631.	7.3	141
36	Molecular hydrogel-immobilized enzymes exhibit superactivity and high stability in organic solvents. Chemical Communications, 2007, , 1032.	2.2	126

#	Article	IF	CITATIONS
37	Supramolecular Nanofibers Containing Arginine-Glycine-Aspartate (RGD) Peptides Boost Therapeutic Efficacy of Extracellular Vesicles in Kidney Repair. ACS Nano, 2020, 14, 12133-12147.	7.3	123
38	Rational Design of a Tetrameric Protein to Enhance Interactions between Selfâ€Assembled Fibers Gives Molecular Hydrogels. Angewandte Chemie - International Edition, 2012, 51, 4388-4392.	7.2	122
39	Supramolecular hydrogels based on \hat{l}^2 -amino acid derivatives. Chemical Communications, 2006, , 738.	2.2	121
40	Short-peptide-based molecular hydrogels: novel gelation strategies and applications for tissue engineering and drug delivery. Nanoscale, 2012, 4, 5259.	2.8	121
41	Switchable Catalytic Activity: Seleniumâ€Containing Peptides with Redoxâ€Controllable Selfâ€Assembly Properties. Angewandte Chemie - International Edition, 2013, 52, 7781-7785.	7.2	121
42	Conjugation of two complementary anti-cancer drugs confers molecular hydrogels as a co-delivery system. Chemical Communications, 2012, 48, 395-397.	2.2	113
43	When Molecular Probes Meet Selfâ€Assembly: An Enhanced Quenching Effect. Angewandte Chemie - International Edition, 2015, 54, 4823-4827.	7.2	112
44	Enzymatic hydrogelation to immobilize an enzyme for high activity and stability. Soft Matter, 2008, 4, 550.	1.2	106
45	Enzymeâ€instructed selfâ€assembly of peptide derivatives to form nanofibers and hydrogels. Biopolymers, 2010, 94, 19-31.	1.2	99
46	Incorporation of supramolecular hydrogels into agarose hydrogels—a potential drug delivery carrier. Journal of Materials Chemistry, 2009, 19, 7892.	6.7	98
47	Self-assembled nanospheres as a novel delivery system for taxol: a molecular hydrogel with nanosphere morphology. Chemical Communications, 2011, 47, 4439.	2.2	98
48	Peptide-Induced AlEgen Self-Assembly: A New Strategy to Realize Highly Sensitive Fluorescent Light-Up Probes. Analytical Chemistry, 2016, 88, 3872-3878.	3.2	97
49	Exceptionally small supramolecular hydrogelators based on aromatic–aromatic interactions. Beilstein Journal of Organic Chemistry, 2011, 7, 167-172.	1.3	94
50	Peptide-based supramolecular hydrogels for local drug delivery. Advanced Drug Delivery Reviews, 2021, 174, 482-503.	6.6	89
51	Enzymatic control of the self-assembly of small molecules: a new way to generate supramolecular hydrogels. Soft Matter, 2007, 3, 515.	1.2	85
52	Using Enzymes to Control Molecular Hydrogelation. Advanced Materials, 2006, 18, 3043-3046.	11.1	79
53	Self-Assembly-Induced Far-Red/Near-Infrared Fluorescence Light-Up for Detecting and Visualizing Specific Protein–Peptide Interactions. ACS Nano, 2014, 8, 1475-1484.	7.3	79
54	A structure–gelation ability study in a short peptide-based â€~Super Hydrogelator' system. Soft Matter, 2011, 7, 3897.	1.2	77

#	Article	IF	CITATIONS
55	Molecular hydrogels of hydrophobic compounds: a novel self-delivery system for anti-cancer drugs. Soft Matter, 2012, 8, 2344-2347.	1.2	77
56	Cooperative Self-Assembly of Peptide Gelators and Proteins. Biomacromolecules, 2013, 14, 4368-4376.	2.6	76
57	Enzyme-controllable delivery of nitric oxide from a molecular hydrogel. Chemical Communications, 2013, 49, 9173.	2.2	75
58	Disulfide bond as a cleavable linker for molecular self-assembly and hydrogelation. Chemical Communications, 2011, 47, 1619-1621.	2.2	74
59	Surface-Induced Hydrogelation Inhibits Platelet Aggregation. Journal of the American Chemical Society, 2013, 135, 266-271.	6.6	73
60	Controlling peptidebased hydrogelation. Materials Today, 2012, 15, 500-507.	8.3	72
61	Phenothiazine as an aromatic capping group to construct a short peptide-based â€~super gelator'. Chemical Communications, 2013, 49, 1853.	2.2	72
62	Self-Assembling Peptide of <scp>d</scp> -Amino Acids Boosts Selectivity and Antitumor Efficacy of 10-Hydroxycamptothecin. ACS Applied Materials & Interfaces, 2014, 6, 5558-5565.	4.0	71
63	Supramolecular Nanofibers with Superior Bioactivity to Insulin-Like Growth Factor-I. Nano Letters, 2019, 19, 1560-1569.	4.5	71
64	Responsive Small Molecular Hydrogels Based on Adamantane–Peptides for Cell Culture. Journal of Physical Chemistry B, 2012, 116, 633-638.	1.2	69
65	Dynamic Biostability, Biodistribution, and Toxicity of <scp>l</scp> / <scp>d</scp> -Peptide-Based Supramolecular Nanofibers. ACS Applied Materials & Interfaces, 2015, 7, 2735-2744.	4.0	67
66	Supramolecular Selfâ€Assemblyâ€Facilitated Aggregation of Tumorâ€Specific Transmembrane Receptors for Signaling Activation and Converting Immunologically Cold to Hot Tumors. Advanced Materials, 2021, 33, e2008518.	11.1	66
67	Supramolecular Nanofibers of Curcumin for Highly Amplified Radiosensitization of Colorectal Cancers to Ionizing Radiation. Advanced Functional Materials, 2018, 28, 1707140.	7.8	65
68	Enhanced cellular uptake and nuclear accumulation of drug-peptide nanomedicines prepared by enzyme-instructed self-assembly. Journal of Controlled Release, 2020, 317, 109-117.	4.8	65
69	High Catalytic Activities of Artificial Peroxidases Based on Supramolecular Hydrogels That Contain Heme Models. Chemistry - A European Journal, 2008, 14, 5073-5078.	1.7	63
70	Folic Acid Derived Hydrogel Enhances the Survival and Promotes Therapeutic Efficacy of iPS Cells for Acute Myocardial Infarction. ACS Applied Materials & Interfaces, 2018, 10, 24459-24468.	4.0	63
71	Supramolecular hydrogels inspired by collagen for tissue engineering. Organic and Biomolecular Chemistry, 2010, 8, 3267.	1.5	62
72	Environment-Sensitive Fluorescent Supramolecular Nanofibers for Imaging Applications. Analytical Chemistry, 2014, 86, 2193-2199.	3.2	61

Zhimou Yang

#	Article	IF	CITATIONS
73	Cancer vaccines using supramolecular hydrogels of NSAID-modified peptides as adjuvants abolish tumorigenesis. Nanoscale, 2017, 9, 14058-14064.	2.8	61
74	Enzymeâ€Instructed Selfâ€Assembly Enabled Monomer–Excimer Transition to Construct Higher Ordered Luminescent Supramolecular Assembly for Activityâ€based Bioimaging. Angewandte Chemie - International Edition, 2021, 60, 8121-8129.	7.2	61
75	Phenyl groups in supramolecular nanofibers confer hydrogels with high elasticity and rapid recovery. Journal of Materials Chemistry, 2010, 20, 2128.	6.7	60
76	Rational design of a photo-responsive UVR8-derived protein and a self-assembling peptide–protein conjugate for responsive hydrogel formation. Nanoscale, 2015, 7, 16666-16670.	2.8	58
77	A supramolecular hydrogelator of curcumin. Chemical Communications, 2014, 50, 9413-9415.	2.2	57
78	Selectively Inducing Cancer Cell Death by Intracellular Enzymeâ€Instructed Selfâ€Assembly (EISA) of Dipeptide Derivatives. Advanced Healthcare Materials, 2017, 6, 1601400.	3.9	56
79	Enzyme-assisted peptide folding, assembly and anti-cancer properties. Nanoscale, 2017, 9, 11987-11993.	2.8	56
80	Controlling self-assembly within nanospace for peptide nanoparticle fabrication. Soft Matter, 2008, 4, 1617.	1.2	52
81	A Glycyrrhetinic Acid-Modified Curcumin Supramolecular Hydrogel for liver tumor targeting therapy. Scientific Reports, 2017, 7, 44210.	1.6	52
82	Spatiotemporal Control of Supramolecular Self-Assembly and Function. ACS Applied Materials & amp; Interfaces, 2017, 9, 10012-10018.	4.0	51
83	Dual enzymes regulate the molecular self-assembly of tetra-peptide derivatives. Soft Matter, 2011, 7, 10443.	1.2	50
84	Recombinant proteins as cross-linkers for hydrogelations. Chemical Society Reviews, 2013, 42, 891-901.	18.7	50
85	A Mixed Component Supramolecular Hydrogel to Improve Mice Cardiac Function and Alleviate Ventricular Remodeling after Acute Myocardial Infarction. Advanced Functional Materials, 2017, 27, 1701798.	7.8	47
86	Self-assembled hybrid nanofibers confer a magnetorheological supramolecular hydrogel. Tetrahedron, 2007, 63, 7349-7357.	1.0	46
87	Enzyme-triggered self-assembly of a small molecule: a supramolecular hydrogel with leaf-like structures and an ultra-low minimum gelation concentration. Nanotechnology, 2010, 21, 225606.	1.3	46
88	Disulfide bond reduction-triggered molecular hydrogels of folic acid–Taxol conjugates. Organic and Biomolecular Chemistry, 2013, 11, 6946.	1.5	46
89	A saccharide-based supramolecular hydrogel for cell culture. Carbohydrate Research, 2011, 346, 1013-1017.	1.1	45
90	Tandem Molecular Selfâ€Assembly in Liver Cancer Cells. Angewandte Chemie, 2018, 130, 1831-1834.	1.6	44

#	Article	IF	CITATIONS
91	β-Galactosidase instructed supramolecular hydrogelation for selective identification and removal of senescent cells. Chemical Communications, 2019, 55, 7175-7178.	2.2	44
92	A hybrid hydrogel for efficient removal of methyl violet from aqueous solutions. Colloids and Surfaces B: Biointerfaces, 2010, 80, 155-160.	2.5	42
93	Interfacial self-assembly leads to formation of fluorescent nanoparticles for simultaneous bacterial detection and inhibition. Chemical Communications, 2014, 50, 3473-3475.	2.2	41
94	Using Congo red to report intracellular hydrogelation resulted from self-assembly of small molecules. Chemical Communications, 2007, , 4096.	2.2	40
95	In situ generated Dâ€peptidic nanofibrils as multifaceted apoptotic inducers to target cancer cells. Cell Death and Disease, 2017, 8, e2614-e2614.	2.7	40
96	Highly stable surface modifications of poly(3-caprolactone) (PCL) films by molecular self-assembly to promote cells adhesion and proliferation. Chemical Communications, 2011, 47, 8901.	2.2	39
97	Visualized detection of melamine in milk by supramolecular hydrogelations. Chemical Communications, 2014, 50, 12873-12876.	2.2	39
98	Anti-degradation of a recombinant complex protein by incoporation in small molecular hydrogels. Chemical Communications, 2011, 47, 955-957.	2.2	38
99	Multifunctional biohybrid hydrogels for cell culture and controlled drug release. Chemical Communications, 2013, 49, 7448.	2.2	38
100	β-galactosidase responsive AIE fluorogene for identification and removal of senescent cancer cells. Science China Chemistry, 2020, 63, 398-403.	4.2	38
101	The first pamidronate containing polymer and copolymer. Chemical Communications, 2006, , 2795.	2.2	37
102	Responsive peptide-based supramolecular hydrogels constructed by self-immolative chemistry. Nanoscale, 2018, 10, 21459-21465.	2.8	37
103	PDGF-BB-derived supramolecular hydrogel for promoting skin wound healing. Journal of Nanobiotechnology, 2022, 20, 201.	4.2	37
104	Facet-Selective 2D Self-Assembly of TiO2 Nanoleaves via Supramolecular Interactions. Chemistry of Materials, 2008, 20, 7514-7520.	3.2	36
105	Glutathione-triggered formation of molecular hydrogels for 3D cell culture. Colloids and Surfaces B: Biointerfaces, 2013, 108, 352-357.	2.5	36
106	Supramolecular nanofibers of self-assembling peptides and proteins for protein delivery. Chemical Communications, 2015, 51, 14239-14242.	2.2	36
107	Design, syntheses, and evaluation of Taspase1 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 5086-5090.	1.0	35
108	Using a mild hydrogelation process to confer stable hybrid hydrogels for enzyme immobilization. RSC Advances, 2013, 3, 16739.	1.7	34

7

#	Article	IF	CITATIONS
109	A polymer additive boosts the anti-cancer efficacy of supramolecular nanofibers of taxol. Biomaterials Science, 2014, 2, 651-654.	2.6	34
110	Selective Degradation of PD‣1 in Cancer Cells by Enzymeâ€Instructed Selfâ€Assembly. Advanced Functional Materials, 2021, 31, 2102505.	7.8	34
111	Supramolecular nanofibers of triamcinolone acetonide for uveitis therapy. Nanoscale, 2014, 6, 14488-14494.	2.8	32
112	Narrowing the diversification of supramolecular assemblies by preorganization. Chemical Communications, 2018, 54, 2751-2754.	2.2	32
113	Molecular hydrogelators consist of Taxol and short peptides/amino acids. Journal of Materials Chemistry, 2012, 22, 16933.	6.7	30
114	Molecular hydrogelators of peptoid–peptide conjugates with superior stability against enzyme digestion. Nanoscale, 2012, 4, 3644.	2.8	30
115	Janus nanogels of PEGylated Taxol and PLGA–PEG–PLGA copolymer for cancer therapy. Nanoscale, 2013, 5, 9902.	2.8	30
116	Biocompatible fluorescent supramolecular nanofibrous hydrogel for long-term cell tracking and tumor imaging applications. Scientific Reports, 2015, 5, 16680.	1.6	30
117	Multi-responsive supramolecular hydrogels for drug delivery. Chemical Communications, 2015, 51, 15265-15267.	2.2	30
118	Selective pericellular hydrogelation by the overexpression of an enzyme and a membrane receptor. Nanoscale, 2019, 11, 13714-13719.	2.8	30
119	Supramolecular Nanofibers of Drugâ€Peptide Amphiphile and Affibody Suppress HER2+ Tumor Growth. Advanced Healthcare Materials, 2018, 7, e1800899.	3.9	29
120	A supramolecular protein chaperone for vaccine delivery. Theranostics, 2020, 10, 657-670.	4.6	29
121	A Supramolecular "Trident―for Cancer Immunotherapy. Advanced Functional Materials, 2021, 31, 2100729.	7.8	29
122	Nuclear delivery of dual anticancer drug-based nanomedicine constructed by cisplatinum-induced peptide self-assembly. Nanoscale, 2020, 12, 15275-15282.	2.8	28
123	Potentiating the immune response of MUC1-based antitumor vaccines using a peptide-based nanovector as a promising vaccine adjuvant. Chemical Communications, 2017, 53, 9486-9489.	2.2	27
124	A versatile supramolecular nanoadjuvant that activates NF-κB for cancer immunotherapy. Theranostics, 2019, 9, 3388-3397.	4.6	27
125	Hierarchical Nanostructured Electrospun Membrane with Periosteumâ€Mimic Microenvironment for Enhanced Bone Regeneration. Advanced Healthcare Materials, 2021, 10, e2101195.	3.9	27
126	From mouse to mouseâ€ear cress: Nanomaterials as vehicles in plant biotechnology. Exploration, 2021, 1, 9-20.	5.4	27

#	Article	IF	CITATIONS
127	A thixotropic molecular hydrogel selectively enhances Flk1 expression in differentiated murine embryonic stem cells. Soft Matter, 2011, 7, 5430.	1.2	26
128	Surface-Induced Hydrogelation for Fluorescence and Naked-Eye Detections of Enzyme Activity in Blood. Analytical Chemistry, 2016, 88, 7318-7323.	3.2	26
129	A strong CD8 ⁺ T cell-stimulating supramolecular hydrogel. Nanoscale, 2020, 12, 2111-2117.	2.8	26
130	An Insulinâ€Inspired Supramolecular Hydrogel for Prevention of Type 1 Diabetes. Advanced Science, 2021, 8, 2003599.	5.6	26
131	Using enzymatic reactions to enhance the photodynamic therapy effect of porphyrin dityrosine phosphates. Chemical Communications, 2006, , 5021.	2.2	25
132	Bisphosphonate-containing supramolecular hydrogels for topical decorporation of uranium-contaminated wounds in mice. International Journal of Radiation Biology, 2008, 84, 353-362.	1.0	25
133	Directional molecular sliding movement in peptide hydrogels accelerates cell proliferation. Chemical Science, 2020, 11, 1383-1393.	3.7	25
134	<p>Delivery of MSCs with a Hybrid β-Sheet Peptide Hydrogel Consisting IGF-1C Domain and D-Form Peptide for Acute Kidney Injury Therapy</p> . International Journal of Nanomedicine, 2020, Volume 15, 4311-4324.	3.3	25
135	BSA-stabilized molecular hydrogels of a hydrophobic compound. Nanoscale, 2012, 4, 3047.	2.8	24
136	Far-red/near-infrared fluorescence light-up probes for specific in vitro and in vivo imaging of a tumour-related protein. Scientific Reports, 2016, 6, 23190.	1.6	24
137	Optimized Ratiometric Fluorescent Probes by Peptide Self-Assembly. Analytical Chemistry, 2016, 88, 740-745.	3.2	24
138	In situ formation of peptidic nanofibers can fundamentally optimize the quality of immune responses against HIV vaccine. Nanoscale Horizons, 2016, 1, 135-143.	4.1	24
139	A novel thermogel system of self-assembling peptides manipulated by enzymatic dephosphorylation. Chemical Communications, 2019, 55, 5123-5126.	2.2	24
140	Tandem Molecular Self-Assembly Selectively Inhibits Lung Cancer Cells by Inducing Endoplasmic Reticulum Stress. Research, 2019, 2019, 4803624.	2.8	24
141	Folic acid as a versatile motif to construct molecular hydrogelators through conjugations with hydrophobic therapeutic agents. Journal of Materials Chemistry, 2012, 22, 21838.	6.7	23
142	Cellular Membrane Enrichment of Self-Assembling <scp>d</scp> -Peptides for Cell Surface Engineering. ACS Applied Materials & Interfaces, 2014, 6, 9815-9821.	4.0	23
143	Single Dose of Protein Vaccine with Peptide Nanofibers As Adjuvants Elicits Long-Lasting Antibody Titer. ACS Biomaterials Science and Engineering, 2018, 4, 2000-2006.	2.6	23
144	Anticancer Supramolecular Hydrogel of D/L-Peptide with Enhanced Stability and Bioactivity. Journal of Biomedical Nanotechnology, 2018, 14, 1125-1134.	0.5	23

#	Article	IF	CITATIONS
145	An Ultrashort Peptide-Based Supramolecular Hydrogel Mimicking IGF-1 to Alleviate Glucocorticoid-Induced Sarcopenia. ACS Applied Materials & Interfaces, 2020, 12, 34678-34688.	4.0	23
146	Gemcitabine induced supramolecular hydrogelations of aldehyde-containing short peptides. RSC Advances, 2014, 4, 34729-34732.	1.7	22
147	A Peptideâ€Based Supramolecular Hydrogel for Controlled Delivery of Amine Drugs. Chemistry - an Asian Journal, 2018, 13, 3460-3463.	1.7	21
148	Organelle-inspired supramolecular nanomedicine to precisely abolish liver tumor growth and metastasis. Bioactive Materials, 2022, 9, 120-133.	8.6	20
149	In situ enzymatic formation of supramolecular nanofibers for efficiently killing cancer cells. RSC Advances, 2016, 6, 32519-32522.	1.7	19
150	A supramolecular hydrogel to boost the production of antibodies for phosphorylated proteins. Chemical Communications, 2019, 55, 12388-12391.	2.2	19
151	Old Dog New Tricks: PLGA Microparticles as an Adjuvant for Insulin Peptide Fragment-Induced Immune Tolerance against Type 1 Diabetes. Molecular Pharmaceutics, 2020, 17, 3513-3525.	2.3	19
152	Enzyme-instructed and mitochondria-targeting peptide self-assembly to efficiently induce immunogenic cell death. Acta Pharmaceutica Sinica B, 2022, 12, 2740-2750.	5.7	19
153	Using matrix metalloprotease-9 (MMP-9) to trigger supramolecular hydrogelation. Soft Matter, 2009, ,	1.2	18
154	Enzyme-assisted formation of nanosphere: a potential carrier for hydrophobic compounds. Nanotechnology, 2010, 21, 155602.	1.3	18
155	Supramolecular hydrogel of kanamycin selectively sequesters 16S rRNA. Chemical Communications, 2012, 48, 9257.	2.2	18
156	Glutathione-Triggered Formation of a Fmoc-Protected Short Peptide-Based Supramolecular Hydrogel. PLoS ONE, 2014, 9, e106968.	1.1	18
157	Rational Design of Multifunctional Heteroâ€Hexameric Proteins for Hydrogel Formation and Controlled Delivery of Bioactive Molecules. Advanced Healthcare Materials, 2014, 3, 1804-1811.	3.9	18
158	Dual-ligand supramolecular nanofibers inspired by the renin-angiotensin system for the targeting and synergistic therapy of myocardial infarction. Theranostics, 2021, 11, 3725-3741.	4.6	18
159	A novel mixed-component molecular hydrogel system with excellent stabilities. Chemical Communications, 2012, 48, 6175.	2.2	17
160	Gd(III)-induced Supramolecular Hydrogelation with Enhanced Magnetic Resonance Performance for Enzyme Detection. Scientific Reports, 2017, 7, 40172.	1.6	17
161	Bifunctional Supramolecular Hydrogel Alleviates Myocardial Ischemia/Reperfusion Injury by Inhibiting Autophagy and Apoptosis. Journal of Biomedical Nanotechnology, 2018, 14, 1458-1470.	0.5	17
162	Preorganization Increases the Self-Assembling Ability and Antitumor Efficacy of Peptide Nanomedicine. ACS Applied Materials & Interfaces, 2020, 12, 22492-22498.	4.0	17

#	Article	IF	CITATIONS
163	Targeting macrophage liver X receptors by hydrogelâ€encapsulated T0901317 reduces atherosclerosis without effect on hepatic lipogenesis. British Journal of Pharmacology, 2021, 178, 1620-1638.	2.7	17
164	Supramolecular hydrogels of self-assembled zwitterionic-peptides. Chinese Chemical Letters, 2021, 32, 3636-3640.	4.8	17
165	Use of Activity-Based Probes to Develop High Throughput Screening Assays That Can Be Performed in Complex Cell Extracts. PLoS ONE, 2010, 5, e11985.	1.1	17
166	Seamless and early gap healing of osteochondral defects by autologous mosaicplasty combined with bioactive supramolecular nanofiber-enabled gelatin methacryloyl (BSN-GelMA) hydrogel. Bioactive Materials, 2023, 19, 88-102.	8.6	17
167	Enzymatic induction of supramolecular order and bioactivity. Nanoscale, 2016, 8, 10768-10773.	2.8	16
168	Encapsulation of LXR ligand by D-Nap-GFFY hydrogel enhances anti-tumorigenic actions of LXR and removes LXR-induced lipogenesis. Theranostics, 2021, 11, 2634-2654.	4.6	16
169	Evaluation of α,β-unsaturated ketone-based probes for papain-family cysteine proteases. Bioorganic and Medicinal Chemistry, 2009, 17, 1071-1078.	1.4	15
170	PDGF-mimicking supramolecular nanofibers for ionizing radiation-induced injury repair. Chemical Engineering Journal, 2021, 410, 128309.	6.6	15
171	Preorganization boosts the artificial esterase activity of a self-assembling peptide. Science China Chemistry, 2021, 64, 1554-1559.	4.2	15
172	Kinetic control over supramolecular hydrogelation and anticancer properties of taxol. Chemical Communications, 2018, 54, 755-758.	2.2	14
173	Enzyme-instructed self-assembly (EISA) assists the self-assembly and hydrogelation of hydrophobic peptides. Journal of Materials Chemistry B, 2022, 10, 3242-3247.	2.9	13
174	Nanostructure formation-induced fluorescence turn-on for selectively detecting protein thiols in solutions, bacteria and live cells. Chemical Communications, 2015, 51, 10758-10761.	2.2	12
175	Synthetic studies on nonthrombogenic biomaterials 14: synthesis and characterization of poly(ether-urethane) bearing a Zwitterionic structure of phosphorylcholine on the surface. Journal of Biomaterials Science, Polymer Edition, 2003, 14, 707-718.	1.9	11
176	Supramolecular Hydrogels of Indole apped Short Peptides as Vaccine Adjuvants. Chinese Journal of Chemistry, 2017, 35, 1057-1062.	2.6	11
177	A supramolecular hydrogel for spatial-temporal release of auxin to promote plant root growth. Chemical Communications, 2018, 54, 11721-11724.	2.2	10
178	A supramolecular hydrogel based on the combination of YIGSR and RGD enhances mesenchymal stem cells paracrine function via integrin α2β1 and PI3K/AKT signaling pathway for acute kidney injury therapy. Chemical Engineering Journal, 2022, 436, 135088.	6.6	10
179	Precursorâ€involved and Conversion Rateâ€controlled Selfâ€assembly of a 'Super Gelator' in Thixotropic Hydrogels for Drug Delivery. Chinese Journal of Chemistry, 2012, 30, 1781-1787.	2.6	9
180	Orthogonal Enzymatic Reactions to Control Supramolecular Hydrogelations. Chinese Journal of Chemistry, 2012, 30, 53-58.	2.6	9

#	Article	IF	CITATIONS
181	Using Phosphatases to Generate Self-Assembled Nanostructures and Their Applications. Antioxidants and Redox Signaling, 2014, 20, 2179-2190.	2.5	9
182	An injectable hydrogel to reverse the adverse microenvironment of diabetic infarcted heart. Materialia, 2021, 15, 100957.	1.3	9
183	d-amino acid doping peptide hydrogel for the production of a cell colony. RSC Advances, 2014, 4, 9229.	1.7	8
184	Enzyme-controllable F-NMR turn on through disassembly of peptide-based nanospheres for enzyme detection. Organic and Biomolecular Chemistry, 2014, 12, 1383.	1.5	8
185	Fast naked-eye detection of zinc ions by molecular assembly-assisted polymerization of diacetylene. Nanoscale, 2018, 10, 18829-18834.	2.8	8
186	Supramolecular protein glue to boost enzyme activity. Science China Materials, 2019, 62, 1341-1349.	3.5	8
187	Amino acid sequence determines the adjuvant potency of a <scp>d</scp> -tetra-peptide hydrogel. Biomaterials Science, 2022, 10, 3092-3098.	2.6	8
188	A releasable disulfide carbonate linker for molecular hydrogelations. New Journal of Chemistry, 2012, 36, 1556.	1.4	7
189	Controlling the width of nanosheets by peptide length in peptoid–peptide biohybrid hydrogels. RSC Advances, 2016, 6, 67025-67028.	1.7	7
190	Tandem molecular self-assembly for selective lung cancer therapy with an increase in efficiency by two orders of magnitude. Nanoscale, 2021, 13, 10891-10897.	2.8	7
191	Enzymeâ€Instructed Selfâ€Assembly Enabled Monomer–Excimer Transition to Construct Higher Ordered Luminescent Supramolecular Assembly for Activityâ€based Bioimaging. Angewandte Chemie, 2021, 133, 8202-8210.	1.6	7
192	Supramolecular nanofibers with superior anti-angiogenesis and antitumor properties by enzyme-instructed self-assembly (EISA). Chemical Engineering Journal, 2021, 425, 130531.	6.6	7
193	A Supramolecular Hydrogel Inspired by Elastin. Chinese Journal of Chemistry, 2011, 29, 2182-2186.	2.6	6
194	Imaging cellular distribution of fluorescent supramolecular nanofibers. Science China Chemistry, 2016, 59, 719-723.	4.2	5
195	Supramolecular nanofibers of self-assembling peptides and DDP to inhibit cancer cell growth. RSC Advances, 2016, 6, 56903-56906.	1.7	4
196	A SupraGel for efficient production of cell spheroids. Science China Materials, 2022, 65, 1655-1661.	3.5	4
197	An amelogenin-based peptide hydrogel promoted the odontogenic differentiation of human dental pulp cells. International Journal of Energy Production and Management, 2022, 9, .	1.9	4
198	Enzyme-instructed self-assembly enabled fluorescence light-up for alkaline phosphatase detection. Talanta, 2021, 239, 123078.	2.9	3

#	Article	IF	CITATIONS
199	Naphthalenephenylalanine-phenylalanine-glycine-arginine-glycine-aspartic promotes self-assembly of nephron progenitor cells in decellularized scaffolds to construct bioengineered kidneys. Materials Science and Engineering C, 2022, 134, 112590.	3.8	3
200	Self-assembling choline mimicks with enhanced binding affinities to C-LytA protein. Scientific Reports, 2015, 4, 6621.	1.6	2
201	Supramolecular silk from a peptide hydrogel. Materials Chemistry Frontiers, 2017, 1, 911-915.	3.2	2
202	The protective effects of a d-tetra-peptide hydrogel adjuvant vaccine against H7N9 influenza virus in mice. Chinese Chemical Letters, 2023, 34, 107446.	4.8	2
203	Photosensitizer decorated iron oxide nanoparticles: bimodal agent for combined hyperthermia and photodynamic therapy. , 2006, 6139, 36.		1
204	Self-Assembling Peptides for Vaccine Development and Antibody Production. , 2020, , 1497-1517.		1
205	Enhancing PDT drug delivery by enzymatic cleavage of porphyrin phosphates. , 2007, , .		0
206	Visualized detection of vancomycin by supramolecular hydrogelations. RSC Advances, 2015, 5, 80591-80595.	1.7	0
207	Self-Assembling Peptides for Vaccine Development and Antibody Production. , 2019, , 1-21.		0
208	Pathway-dependent supramolecular polymerization of camptothecin derivatives into filaments for chemotherapy and imaging. Applied Materials Today, 2020, 20, 100787.	2.3	0