William C Wimley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8601949/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthetic Molecular Evolution of Cell Penetrating Peptides. Methods in Molecular Biology, 2022, 2383, 73-89.	0.9	3
2	Ebola virus delta peptide is an enterotoxin. Cell Reports, 2022, 38, 110172.	6.4	3
3	Integrated Design of a Membraneâ€Lytic Peptideâ€Based Intravenous Nanotherapeutic Suppresses Tripleâ€Negative Breast Cancer. Advanced Science, 2022, 9, e2105506.	11.2	7
4	The Remarkable Innate Resistance of Burkholderia bacteria to Cationic Antimicrobial Peptides: Insights into the Mechanism of AMP Resistance. Journal of Membrane Biology, 2022, , 1.	2.1	5
5	pH-triggered pore-forming peptides with strong composition-dependent membrane selectivity. Biophysical Journal, 2021, 120, 618-630.	0.5	11
6	Tuning of a Membrane-Perforating Antimicrobial Peptide to Selectively Target Membranes of Different Lipid Composition. Journal of Membrane Biology, 2021, 254, 75-96.	2.1	13
7	High glucose induces trafficking of prorenin receptor and stimulates profibrotic factors in the collecting duct. Scientific Reports, 2021, 11, 13815.	3.3	5
8	Inhibition of Streptococcus mutans biofilms with bacterial-derived outer membrane vesicles. BMC Microbiology, 2021, 21, 234.	3.3	18
9	Applications and evolution of melittin, the quintessential membrane active peptide. Biochemical Pharmacology, 2021, 193, 114769.	4.4	45
10	Membrane-selective Nanoscale Pores in Liposomes by a Synthetically Evolved Peptide: Implications for Triggered Release. Nanoscale, 2021, 13, 12185-12197.	5.6	11
11	Rational Modulation of pH-Triggered Macromolecular Poration by Peptide Acylation and Dimerization. Journal of Physical Chemistry B, 2020, 124, 8835-8843.	2.6	3
12	Broad-Spectrum Antiviral Entry Inhibition by Interfacially Active Peptides. Journal of Virology, 2020, 94, .	3.4	16
13	How We Came to Understand the "Tumultuous Chemical Heterogeneity―of the Lipid Bilayer Membrane. Journal of Membrane Biology, 2020, 253, 185-190.	2.1	0
14	Synthetic molecular evolution of host cell-compatible, antimicrobial peptides effective against drug-resistant, biofilm-forming bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8437-8448.	7.1	43
15	Crotonylation at serine 46 impairs p53 activity. Biochemical and Biophysical Research Communications, 2020, 524, 730-735.	2.1	19
16	The Mechanism of Membrane Permeabilization by Peptides: Still an Enigma. Australian Journal of Chemistry, 2020, 73, 96.	0.9	34
17	Burkholderia thailandensis outer membrane vesicles exert antimicrobial activity against drug-resistant and competitor microbial species. Journal of Microbiology, 2020, 58, 550-562.	2.8	38
18	Simulation-Guided Rational <i>de Novo</i> Design of a Small Pore-Forming Antimicrobial Peptide. Journal of the American Chemical Society, 2019, 141, 4839-4848.	13.7	80

#	Article	IF	CITATIONS
19	Mechanism of Action of Peptides That Cause the pH-Triggered Macromolecular Poration of Lipid Bilayers. Journal of the American Chemical Society, 2019, 141, 6706-6718.	13.7	30
20	The Membrane-Active Phytopeptide Cycloviolacin O2 Simultaneously Targets HIV-1-infected Cells and Infectious Viral Particles to Potentiate the Efficacy of Antiretroviral Drugs. Medicines (Basel,) Tj ETQq0 0 0 rgBT /	Ov erl ock I	10 18 50 697 1
21	Application of Synthetic Molecular Evolution to the Discovery of Antimicrobial Peptides. Advances in Experimental Medicine and Biology, 2019, 1117, 241-255.	1.6	14
22	Mechanistic Landscape of Membrane-Permeabilizing Peptides. Chemical Reviews, 2019, 119, 6040-6085.	47.7	173
23	How Does Melittin Permeabilize Membranes?. Biophysical Journal, 2018, 114, 251-253.	0.5	30
24	Potent Macromolecule-Sized Poration of Lipid Bilayers by the Macrolittins, A Synthetically Evolved Family of Pore-Forming Peptides. Journal of the American Chemical Society, 2018, 140, 6441-6447.	13.7	41
25	Pituitary adenylate cyclase-activating polypeptide is a potent broad-spectrum antimicrobial peptide: Structure-activity relationships. Peptides, 2018, 104, 35-40.	2.4	48
26	Synthetic molecular evolution of hybrid cell penetrating peptides. Nature Communications, 2018, 9, 2568.	12.8	65
27	Ebola Virus Delta Peptide Is a Viroporin. Journal of Virology, 2017, 91, .	3.4	26
28	pH-Triggered, Macromolecule-Sized Poration of Lipid Bilayers by Synthetically Evolved Peptides. Journal of the American Chemical Society, 2017, 139, 937-945.	13.7	61
29	Spontaneous Membrane Translocating Peptides: The Role of Leucine-Arginine Consensus Motifs. Biophysical Journal, 2017, 113, 835-846.	0.5	42
30	Antimicrobial peptides are degraded by the cytosolic proteases of human erythrocytes. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 2319-2326.	2.6	65
31	An Outbreak of Ebola Virus Disease in the Lassa Fever Zone. Journal of Infectious Diseases, 2016, 214, S110-S121.	4.0	34
32	Host Cell Interactions Are a Significant Barrier to the Clinical Utility of Peptide Antibiotics. ACS Chemical Biology, 2016, 11, 3391-3399.	3.4	78
33	Pre-Operative Antisepsis Protocol Compliance and the Effect on Bacterial Load Reduction. Surgical Infections, 2016, 17, 32-37.	1.4	7
34	Mechanism Matters: A Taxonomy of Cell Penetrating Peptides. Trends in Biochemical Sciences, 2015, 40, 749-764.	7.5	258
35	Conformational Fine-Tuning of Pore-Forming Peptide Potency and Selectivity. Journal of the American Chemical Society, 2015, 137, 16144-16152.	13.7	53
36	Testing the limits of rational design by engineering pH sensitivity into membrane-active peptides. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 951-957.	2.6	27

#	Article	IF	CITATIONS
37	The Cholesterol-dependent Cytolysin Membrane-binding Interface Discriminates Lipid Environments of Cholesterol to Support β-Barrel Pore Insertion. Journal of Biological Chemistry, 2015, 290, 17733-17744.	3.4	40
38	Determining the Effects of Membrane-Interacting Peptides on Membrane Integrity. Methods in Molecular Biology, 2015, 1324, 89-106.	0.9	27
39	A lack of synergy between membrane-permeabilizing cationic antimicrobial peptides and conventional antibiotics. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 8-15.	2.6	37
40	Novel Antiviral Agents: Design, Identification and Characterization of Interfacially Active Peptide Entry inhibitors. FASEB Journal, 2015, 29, 886.20.	0.5	0
41	Making the Membrane Disappear with Spontaneous Membrane Translocating Peptides. FASEB Journal, 2015, 29, 886.15.	0.5	0
42	Toward the de novo design of antimicrobial peptides: Lack of correlation between peptide permeabilization of lipid vesicles and antimicrobial, cytolytic, or cytotoxic activity in living cells. Biopolymers, 2014, 102, 1-6.	2.4	24
43	Highly Efficient Macromolecule-Sized Poration of Lipid Bilayers by a Synthetically Evolved Peptide. Journal of the American Chemical Society, 2014, 136, 4724-4731.	13.7	59
44	Inhibition of Arenavirus Infection by a Glycoprotein-Derived Peptide with a Novel Mechanism. Journal of Virology, 2014, 88, 8556-8564.	3.4	15
45	Structural Plasticity in the Topology of the Membrane-Interacting Domain of HIV-1 gp41. Biophysical Journal, 2014, 106, 610-620.	0.5	22
46	Interfacially active peptides and proteins. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 2139.	2.6	1
47	Peptide entry inhibitors of enveloped viruses: The importance of interfacial hydrophobicity. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 2180-2197.	2.6	120
48	HCV Infection Selectively Impairs Type I but Not Type III IFN Signaling. American Journal of Pathology, 2014, 184, 214-229.	3.8	63
49	The electrical response of bilayers to the bee venom toxin melittin: Evidence for transient bilayer permeabilization. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 1357-1364.	2.6	50
50	A Membrane-Translocating Peptide Penetrates into Bilayers without Significant Bilayer Perturbations. Biophysical Journal, 2013, 104, 2419-2428.	0.5	42
51	Synthetic Molecular Evolution of Pore-Forming Peptides by Iterative Combinatorial Library Screening. ACS Chemical Biology, 2013, 8, 823-831.	3.4	27
52	pH Dependence of Microbe Sterilization by Cationic Antimicrobial Peptides. Antimicrobial Agents and Chemotherapy, 2013, 57, 3312-3320.	3.2	53
53	Direct Cytosolic Delivery of Polar Cargo to Cells by Spontaneous Membrane-translocating Peptides. Journal of Biological Chemistry, 2013, 288, 29974-29986.	3.4	52
54	Interactions of Membrane Active Peptides with Planar Supported Bilayers: An Impedance Spectroscopy Study. Langmuir, 2012, 28, 6088-6096.	3.5	24

#	Article	IF	CITATIONS
55	TMBB-DB: a transmembrane \hat{l}^2 -barrel proteome database. Bioinformatics, 2012, 28, 2425-2430.	4.1	21
56	Protein folding in membranes. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 925-926.	2.6	4
57	Gain-of-Function Analogues of the Pore-Forming Peptide Melittin Selected by Orthogonal High-Throughput Screening. Journal of the American Chemical Society, 2012, 134, 12732-12741.	13.7	86
58	Determining the mechanism of membrane permeabilizing peptides: Identification of potent, equilibrium pore-formers. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 1625-1632.	2.6	57
59	A Highly Charged Voltageâ€5ensor Helix Spontaneously Translocates across Membranes. Angewandte Chemie - International Edition, 2012, 51, 7150-7153.	13.8	28
60	Release of Dengue Virus Genome Induced by a Peptide Inhibitor. PLoS ONE, 2012, 7, e50995.	2.5	71
61	Spontaneous Membrane-Translocating Peptides by Orthogonal High-Throughput Screening. Journal of the American Chemical Society, 2011, 133, 8995-9004.	13.7	173
62	Structural Plasticity in Self-Assembling Transmembrane β-Sheets. Biophysical Journal, 2011, 101, 828-836.	0.5	5
63	The prediction and characterization of YshA, an unknown outer-membrane protein from Salmonella typhimurium. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 287-297.	2.6	18
64	High-Throughput Selection of Transmembrane Sequences That Enhance Receptor Tyrosine Kinase Activation. Journal of Molecular Biology, 2011, 412, 43-54.	4.2	26
65	A Look at Arginine in Membranes. Journal of Membrane Biology, 2011, 239, 49-56.	2.1	107
66	Antimicrobial Peptides: Successes, Challenges and Unanswered Questions. Journal of Membrane Biology, 2011, 239, 27-34.	2.1	406
67	FGFR3 Heterodimerization in Achondroplasia, the Most Common Form of Human Dwarfism. Journal of Biological Chemistry, 2011, 286, 13272-13281.	3.4	38
68	Anticancer and chemosensitizing abilities of cycloviolacin O2 from <i>Viola odorata</i> and psyle cyclotides from <i>Psychotria leptothyrsa</i> . Biopolymers, 2010, 94, 617-625.	2.4	95
69	A highly accurate statistical approach for the prediction of transmembrane Î ² -barrels. Bioinformatics, 2010, 26, 1965-1974.	4.1	52
70	Energetics of Peptide and Protein Binding to Lipid Membranes. Advances in Experimental Medicine and Biology, 2010, 677, 14-23.	1.6	10
71	Highâ€ŧhroughput discovery of broadâ€spectrum peptide antibiotics. FASEB Journal, 2010, 24, 3232-3238.	0.5	56
72	Describing the Mechanism of Antimicrobial Peptide Action with the Interfacial Activity Model. ACS Chemical Biology, 2010, 5, 905-917.	3.4	786

#	Article	IF	CITATIONS
73	Toward genomic identification of \hat{l}^2 -barrel membrane proteins: Composition and architecture of known structures. Protein Science, 2009, 11, 301-312.	7.6	199
74	Broad-Spectrum Antimicrobial Peptides by Rational Combinatorial Design and High-Throughput Screening: The Importance of Interfacial Activity. Journal of the American Chemical Society, 2009, 131, 7609-7617.	13.7	262
75	Protein Folding in Membranes: Insights from Neutron Diffraction Studies of a Membrane β-Sheet Oligomer. Biophysical Journal, 2008, 94, 492-505.	O.5	15
76	Characterization of antimicrobial peptide activity by electrochemical impedance spectroscopy. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 2430-2436.	2.6	46
77	Biomolecular Engineering by Combinatorial Design and High-Throughput Screening: Small, Soluble Peptides That Permeabilize Membranes. Journal of the American Chemical Society, 2008, 130, 9849-9858.	13.7	125
78	Viroporin potential of the lentivirus lytic peptide (LLP) domains of the HIV-1 gp41 protein. Virology Journal, 2007, 4, 123.	3.4	33
79	β-Sheet Pore-Forming Peptides Selected from a Rational Combinatorial Library:  Mechanism of Pore Formation in Lipid Vesicles and Activity in Biological Membranes. Biochemistry, 2007, 46, 12124-12139.	2.5	72
80	Inhibition of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) infectivity by peptides analogous to the viral spike protein. Virus Research, 2006, 120, 146-155.	2.2	66
81	The ERBB4/HER4 Intracellular Domain 4ICD Is a BH3-Only Protein Promoting Apoptosis of Breast Cancer Cells. Cancer Research, 2006, 66, 6412-6420.	0.9	189
82	ldentification and Characterization of the Putative Fusion Peptide of the Severe Acute Respiratory Syndrome-Associated Coronavirus Spike Protein. Journal of Virology, 2005, 79, 7195-7206.	3.4	126
83	Rational combinatorial design of pore-forming Â-sheet peptides. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10511-10515.	7.1	66
84	The Aromatic Domain of the Coronavirus Class I Viral Fusion Protein Induces Membrane Permeabilization: Putative Role during Viral Entryâ€. Biochemistry, 2005, 44, 947-958.	2.5	58
85	Enhancing the Therapeutic Potential of an Anti-Leukemic Peptide Blood, 2005, 106, 245-245.	1.4	Ο
86	Reversible Unfolding of β-Sheets in Membranes: A Calorimetric Study. Journal of Molecular Biology, 2004, 342, 703-711.	4.2	33
87	The versatile β-barrel membrane protein. Current Opinion in Structural Biology, 2003, 13, 404-411.	5.7	395
88	Folding of β-sheets in membranes: specificity and promiscuity in peptide model systems. Journal of Molecular Biology, 2001, 309, 975-988.	4.2	51
89	A High-Throughput Screen for Identifying Transmembrane Pore-Forming Peptides. Analytical Biochemistry, 2001, 293, 258-263.	2.4	40
90	Designing Transmembrane α-Helices That Insert Spontaneouslyâ€. Biochemistry, 2000, 39, 4432-4442.	2.5	137

#	Article	IF	CITATIONS
91	Determining the Membrane Topology of Peptides by Fluorescence Quenching. Biochemistry, 2000, 39, 161-170.	2.5	80
92	MEMBRANE PROTEIN FOLDING AND STABILITY: Physical Principles. Annual Review of Biophysics and Biomolecular Structure, 1999, 28, 319-365.	18.3	1,595
93	An amphipathic \hat{I}_{\pm} -helix at a membrane interface: a structural study using a novel X-ray diffraction method 1 1Edited by D. C. Rees. Journal of Molecular Biology, 1999, 290, 99-117.	4.2	196
94	Hydrophobic interactions of peptides with membrane interfaces. BBA - Biomembranes, 1998, 1376, 339-352.	8.0	482
95	[4] Protein folding in membranes: Determining energetics of peptide-bilayer interactions. Methods in Enzymology, 1998, 295, 62-87.	1.0	233
96	Folding of β-sheet membrane proteins: a hydrophobic hexapeptide model. Journal of Molecular Biology, 1998, 277, 1091-1110.	4.2	195
97	The Preference of Tryptophan for Membrane Interfacesâ€. Biochemistry, 1998, 37, 14713-14718.	2.5	899
98	[23] Mechanism of leakage of contents of membrane vesicles determined by fluorescence requenching. Methods in Enzymology, 1997, 278, 474-486.	1.0	56
99	Solvation Energies of Amino Acid Side Chains and Backbone in a Family of Hostâ^Guest Pentapeptides. Biochemistry, 1996, 35, 5109-5124.	2.5	534
100	Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nature Structural and Molecular Biology, 1996, 3, 842-848.	8.2	1,525
101	Structure, function, and membrane integration of defensins. Current Opinion in Structural Biology, 1995, 5, 521-527.	5.7	392
102	Interactions between human defensins and lipid bilayers: Evidence for formation of multimeric pores. Protein Science, 1994, 3, 1362-1373.	7.6	349
103	Peptides in lipid bilayers: structural and thermodynamic basis for partitioning and folding. Current Opinion in Structural Biology, 1994, 4, 79-86.	5.7	182
104	Membrane partitioning: Distinguishing bilayer effects from the hydrophobic effect. Biochemistry, 1993, 32, 6307-6312.	2.5	209
105	Transbilayer and interbilayer phospholipid exchange in dimyristoylphosphatidylcholine/dimyristoylphosphatidylethanolamine large unilamellar vesicles. Biochemistry, 1991, 30, 1702-1709.	2.5	76
106	Exchange and flip-flop of dimyristoyl phosphatidylcholine in liquid-crystalline, gel and two-component, two-phase large unilamellar vesicles. Biochemistry, 1990, 29, 1296-1303.	2.5	116